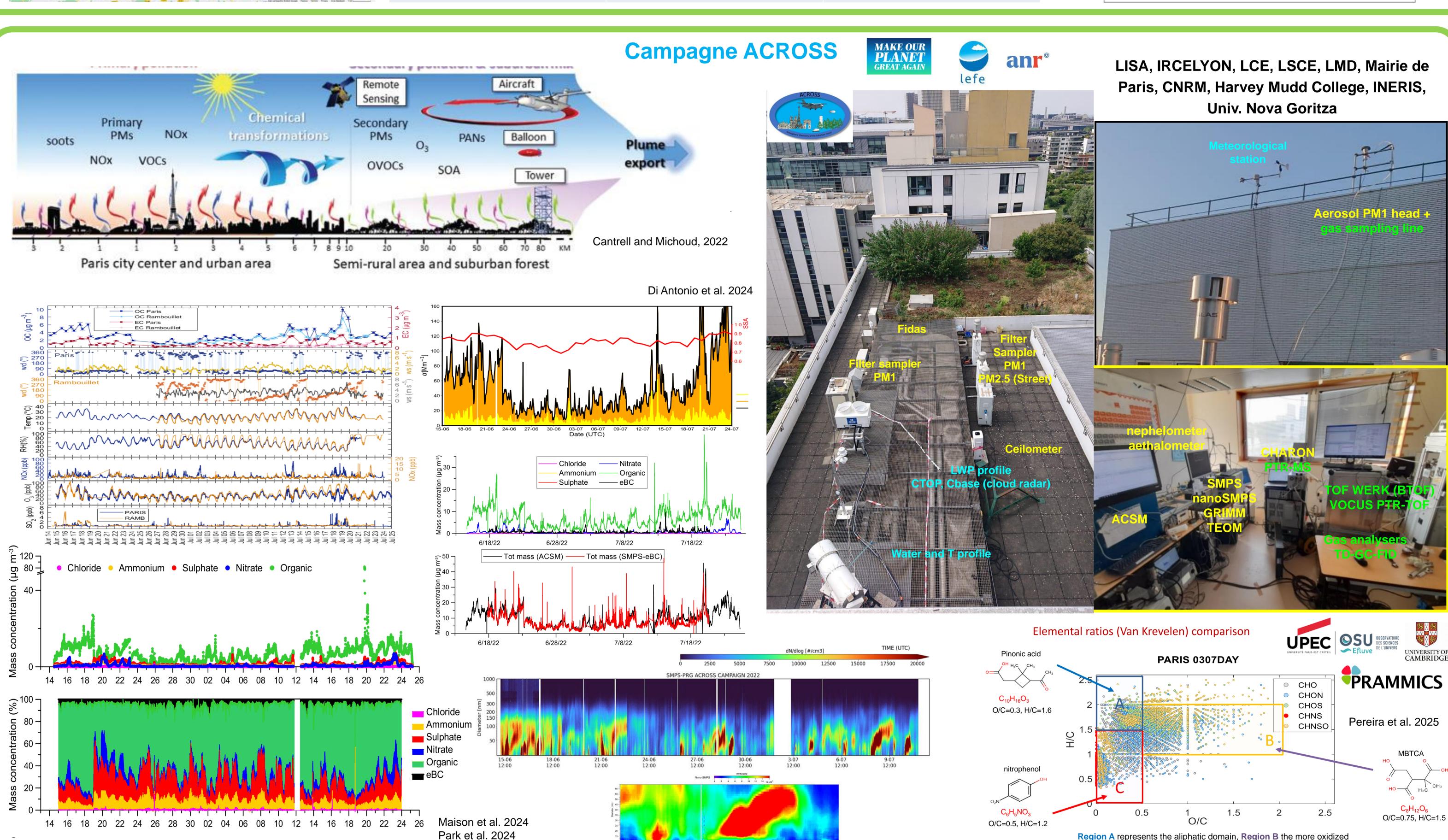


Station qualité de l'air du LISA à UPCité : un outil pédagogique tourné vers la recherche

Gratien Aline¹, Michoud Vincent¹, Laurent Benoit¹, Di Biagio Claudia¹, Foret Gilles², Gaimoz Cécile², Chevaillier Servanne¹, Maisonneuve Franck², Gomes Sarah¹, Pangui Edouard², Le Jeune Aymeric¹, Zapf Pascal², Allegre Muguette², Cazaunau Mathieu², Feingesicht Maxime², Desboeufs Karine¹, Coll Patrice¹

¹Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, F-75013, Paris, France, ²Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010, Créteil, France


Site situé à l'Université Paris Cité (LISA, XIIIe arrondissement) Station urbaine de fond avec un impact du trafic (7e étage)

Station: genèse, situation, instrument et qualification

Instrument	Espèces / paramètre		
O341M Envea et O342E Envea	O_3	En continu depuis 2015	
NOX AC32M Environnement SA	NO, NO ₂	En continu depuis 2015	
AF22E Envea	SO ₂	En continu depuis 2015	
GRIMM OPC 1.108	Concentration en nombre d'aérosol	Sur campagne	
TEOM 1400A Thermo Fisher Scientific	Concentration massique d'aérosol	Sur campagne	
Partisol	Prélèvement de particules	Sur campagne	
Station météo Young	pression, température, humidité relative, précipitation, direction et vitesse du vent	En continu depuis 2015	
Ceilomètre	Hauteur couche limite, retrodiffusion des aérosols	En continu depuis 2015	

- La station sert de support pédagogique pour les étudiants de l'Université Paris Cité (UPCité) :
- Licence professionnelle d'analyse chimique (LIPAC)
- Licence IPGP Licence CHIMIE
- Master RE SGE: M1 RE SGE et M2 AIR

400		Profil de concentration : H	ver 2023-2024		
400					
350					
300					
			1		
250			M		
			[] [
200			V		
150		A		1 1 1	
			11 1 1 1		
100			11 1 11./		
	V		1 1 1	"\m'\/\	. ^
50	My M			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	M · · ·
	Mary Mary Mary	W W	from your	and have	1 A A
0	//2023 21/12/2023 23/12	2/2023 25/12/2023 27/	2/2023 29/12	2023 31/12/2023	02/01/2024

Exercice de collecte de dépôt de microplastiques atmosphériques

La présence des microplastiques dans l'atmosphère soulève des interrogations concernant la variabilité de leur concentrations et flux, l'identification de leurs sources d'émission dans l'air, et la compréhension de la dynamique de leurs dépôts

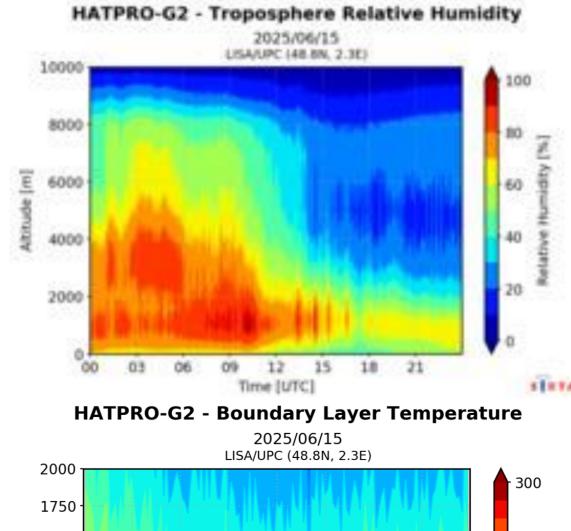
Deesu

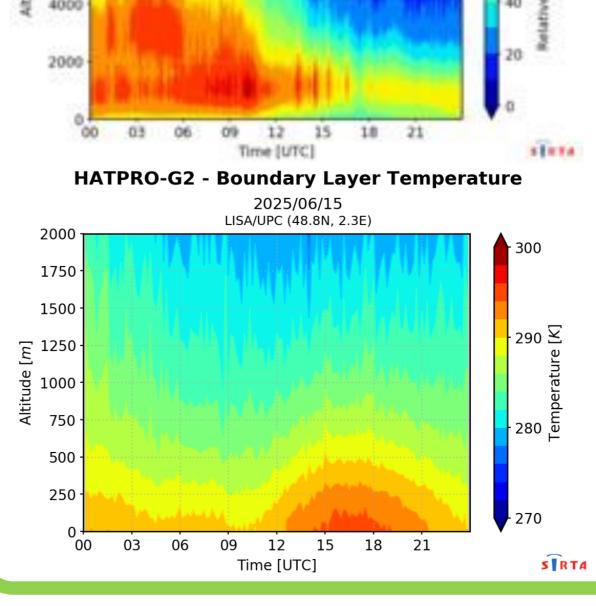
Enjeux de l'échantillonnage des microplastiques atmosphériques sur un site urbain multi-sources

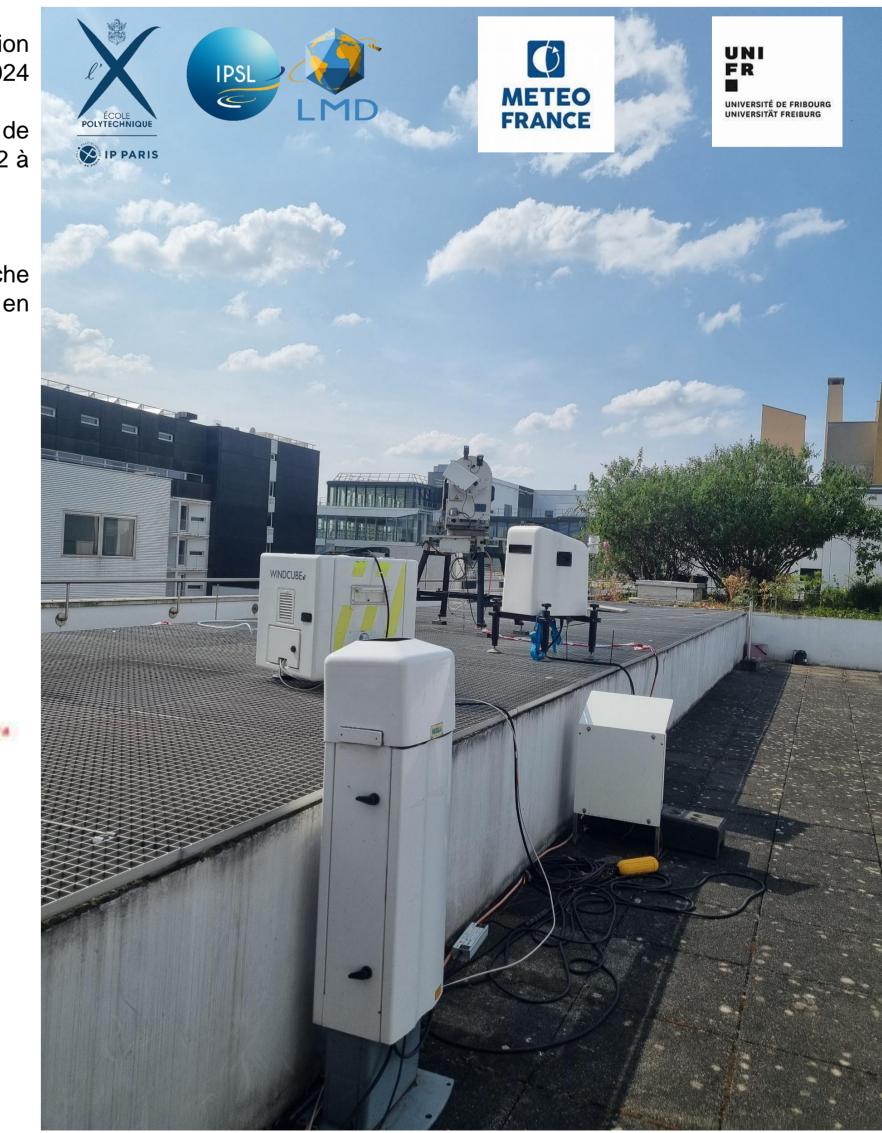
Prélèvements passifs pour quantifier concentrations et flux des dépôts secs et humides en microplastiques :

- Collecteurs de dépôts grand volume haute fréquence 1 (LISA) et 2 (LEESU)
- Collecteurs de dépôts petite surface longue période 3 (Univ. Lille) et 4 (Univ. Poitiers)

- Filtre de dépôts de microplastiques atmosphériques après chacune des étapes :
 - de filtration de l'eau (gauche), - de digestion de la MO (centre)
 - de séparation densimétrique et tamisage (droite)






Accueil d'instruments partenaires pour étude du climat urbain

Les instruments partenaires accueillis:

- Lidar Doppler (profils verticaux de vitesse et direction du vent) de l'université de Fribourg de 2022 à 2024 et un autre du LMD depuis 2025
- Radiomètre micro-onde (profils verticaux de température et humidité) de météo France de 2022 à 2024 et un autre du LMD depuis 2024
- Radar nuage de Météo France en 2022 Lidar dial vapeur d'eau de Météo France en 2022
- Ceilomètre CL61 (hauteur de nuage et de couche limite avec mesure de dépolarisation) du LMD en

domain, and Region C the low oxygenated aromatic hydrocarbon domain,

LISA (UPCité-UPEC-CNRS), LEESU (UPEC-ENPC), Univ. Lille, Univ. Poitiers

References: Cantrell and Michoud (2022) Bull Am Meteorol Soc, 599-603, Pereira et al., Atmos. Chem. Phys., 25, 4885–4905, https://doi.org/10.5194/acp-25-4885-2025, 2025, Park, S.-J et al. EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2120, 2024; Di Antonio et al. EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2175, 2024, Di Antonio et al. EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2299, 2024. Maison et al., Atmos. Chem. Phys., 24, 6011–6046, https://doi.org/10.5194/acp-24-6011-2024, 2024.