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Airflow is strongly modified by agrivoltaic systems. What are the

consequences on energy and water exchanges?
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Context / Experimental Data

A combination of computational fluid dynamics (CFD) simulation O —
d based ob ion data is used to analyze the impact of The friction velocity: u* = (W w'- + v’w’2)0'25[1] ww', v'w’: Reynolds stress tensor,
and sensor- assa o serv?tlon ata is used to analyze the impacto y: = representing turbulent momentumn transport
PV panels on airflow, ultimately on energy and water transfers at
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The SIRTA APV experimental platform is designed to compare plant
cultivated beneath PV panels with plants in open field conditions. It
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consists of a ”PV zone’ and a ”Control zone” without PV panels. N 1y WL Y IV e[
* PVpanellength (L,) = 21m Figure 2. Measurements of u™ and wind speed under different wind directions and a,,, conditions.
* PVpanelwidth (W,) = 2.3 m « During daytime, PV panels attenuate wind speed, while they increase u*.
e © PVpanelheight (Hp) = 2.5m * Theseincreases and decreases depend on PV panel tilt angle and wind direction.
*=—= ¢« Distance between tracker axes (D,) = 5.5m
AR ~ "~ + PVpaneltiltangle (a,,) € [-60°60°] Wind speed and air mixing are reversely affected by PV panels, thus questioning the resulting
F/gure 1 The SIRTA APVexper/mental platform. effect on energy and water exchanges and how to model them.

Simulation of flow dynamics

The APV platform from SIRTA is :z::ewog S The IBM cqnsists In the implementgtion of a sourge term in.the
numerically simulated using the CFD & flow equation, for the mesh cells with a mix of fluid and solid
solver code_saturne [2]. The numerical ' 5 1Bm)- ou
investigation is conducted based on the o Figure 5. Schematic representation p (E Tu: V”) =V.p +uldu+ fipy
immersed boundary method (IBM). Figure 3. Simulation of the SIRTA APV platform. of a PV panel using the IBM.
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z £ : . e | - L] trends with Changes Ta Figure 6. Vertical profiles of u™ and wind speed (a,,= -60°) for wind towards west.
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Figure 4. Compéﬁson between simulations and measurements for wind towards west. under open field conditions, are modified by the presence of PV panels.

Impact on plant energy and water exchanges
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Reference Evapotranspiration (ET,) is a Evapotranspiration (ET gp;) is derived from plant energy balance.
fundamental indicator for assessing plant water PCp (ern—ey) p: the density of air(kg m~3) = . % %
. .. . . . P a—€a . Pfi ' —lor—-1 =l ey '
requirements, irrigation management, and yield. ETggL, = - [3]  Cpithespecific heatofair (] kg™ C™) =Y _ o ®
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A - the slope of the vapor pressuretemperature curve (kPa °C~1) Two major assumptions, that are challenged in APV conditions: 7z 2 EEL - M. u”(1=1.5m)
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- the psychrometric constan a : Figure 7. Estimation of evapotranspiration.
T : the mean daily air temperature (°C) and at a he|ght Z. g P P
Uz  :the mean daily wind speed at 2 m height (m s~ 1)
€s- €ca: the saturation partial pressure of water vapor at T (kPa) Evapotranspiration is estimated to be lower in APV zone. Using u* or wind speed may modify the results by 30%.
€ : i i i . . . . . . oge
@ :thepartial pressure of water vapor in the air (kPa) Changing the height at which the dynamics is considered modifies the results by 30%.

Conclusion

In APV conditions, wind speed and u™ are modified by PV panels. Their vertical profiles depend on PV panel tilt angle and wind direction. Therefore,
reassessing current models of energy and water exchanges is essential for plants grown under PV panels.
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