

Le Conseil Scientifique SIRTA

Rôles:

- Définir les axes scientifiques
- Accompagner et guider les développements scientifiques pour la Recherche et l'Enseignement expérimental
- Améliorer la visibilité
- Faciliter la mise en place de projets fédérateurs
- Renforcer l'enseignement expérimental

<u>Composition</u>: 20 représentants de 10 principaux laboratoires

Réunions : 2 fois par an

5 axes thématiques, et les GT associés

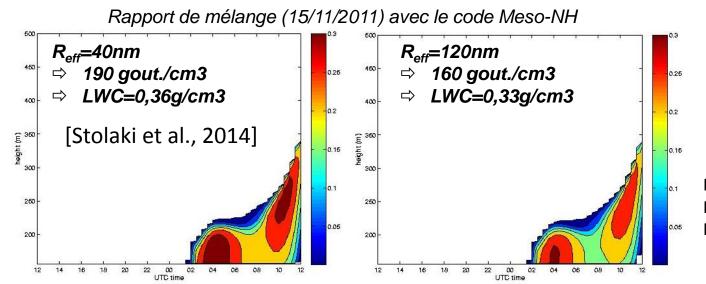
- **GT.1** Nuages, de la surface à la haute troposphère (JC. Dupont, IPSL)
- GT.2 Etudes climatiques (S. Bastin, LATMOS)
- GT.3 Turbulence et dynamique (E. Dupont, CEREA)
- **GT.4** Aérosols et gaz réactifs. Sources, processus et transports (O. Favez, INERIS)
- GT.5 Energies renouvelables (J. Badosa, LMD-X)

A suivre : avancées scientifiques et techniques pour chaque GT

GT 1. Nuages de la surface à la haute troposphère

Labo	Noms / Prénoms	Activités
IPSL	M. Haeffelin, JC. Dupont (PI)	Exploitation scientifique + coordination ParisFog
LMD	C. Pietras, F. Lapouge, JA Bravo- Aranda, MA Drouin, C Boitel	Algorithmie, maintenance, données
LATMOS	J. Delanoë, W. Brett, F. Bertrand	Développement du radar nuage BASTA
LPC2E	JB. Renard, D. Vignelles	Développement de la sonde LOAC
PSI + Munster	E. Hammer, T. Degefie, O. Klemm	TransNationnal Access 2013 + exploitation scientifique 2014
HYGEOS	T. Elias	Exploitation scientifique
CEREA	L. Makké, L. Musson-Genon	Modélisation numérique 3D, code de transferts radiatifs 3D
Météo-France / CNRM	F. Burnet, M. Mazoyer, C. Lac, F. Zanghi	Instrumentation et simulation numérique

SIRTA GT 1. Nuages de la surface à la haute troposphère


- Objectifs scientifiques majeurs :
 - Meilleure compréhension des processus et des interactions pilotant la formation et la dissipation des brouillards;
 - Caractérisation macro et microphysique des cirrus et la quantification de leurs effets radiatifs à la surface.
- Défis techniques / algorithmiques :
 - Développer l'instrumentation capable de mesurer ces variables essentielles ;
 - Développer les **algorithmes nécessaires** pour exploiter les mesures effectuées;
 - Bénéficier de la synergie observations / modélisation numérique. iii.
- Questions sociétales associées :
 - Météorologie et transport. Etudier les processus à fine échelle pour mieux comprendre et prévoir le brouillard et ses conséquences (voir poster grand public vi);
 - Trainées de condensation des avions. Caractériser les propriétés des ii. contrails, leurs évolution, leur impact sur le climat, et la capacité à les modéliser (voir poster B5)

Résultat 1 : Etude de processus portant sur les brouillards et nuages de basse couche

- Rôle clé de la distribution en taille des aérosols par l'observation [Hammer et al., 2014] et la modélisation numérique [Stolaki et al., 2014].
- Rôle clé de la dynamique de surface [Degefie et al., 2014] et également de la thermique [Dupont et al., 2015].
- Démarrage d'une thèse DGA-MODEM en Oct. 2015 (développement de produits via la télédétection, modèles conceptuels), thèse en cours [M. Mazoyer, CNRM; oral à 11h40]
- Acceptation du projet LEFE ParisFog2 (15k€ sur 3 ans)

Présentation orale à 10h40 Poster grand public vi Posters B2, B6 et B8

Balloon 200g

with helium

LOAC

Treuil

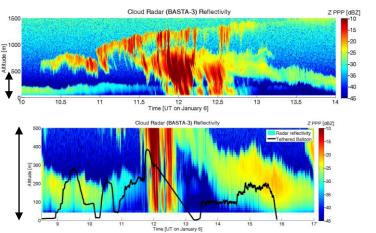
Parachute

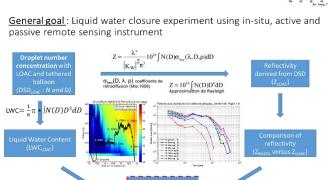
Posters B8

Lâcher RS

M10 radiosonde

Résultat 2 : Campagnes de mesures ballons captifs / télédétection pour brouillards et stratus + étude de fermeture

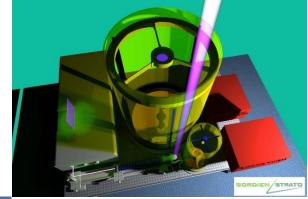

Vols ballon captif effectués sur alerte, contact Orly + DSAC. Vol effectué le 6/01/2015.

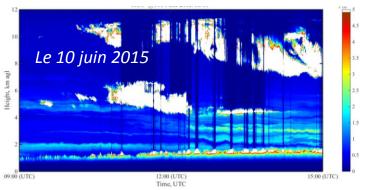

Cadre ACTRIS WP22 (interactions aérosols-nuages et ACTRIS-2 NA2 (calibration radar nuage dans le brouillard ou nuages bas, Z calculée et mesurée).

Etude de fermeture en eau liquide : mesures in-situ, radar nuage et radiomètre micro-onde

Validation paramétrisations et modèles pour microphysique nuageuse

Evaluation extinction télémètre / lidar





Résultat 3 : Installation du lidar haute performance IPRAL

- Dédié à la recherche sur les aérosols, la vapeur d'eau et les nuages
- 1ères mesures effectives le 21 avril 2015, 2 semaines de formation réalisée
- 3 voies rétrodiffusion : 1064, 532 et 355nm, 3 voies Raman : 408, 387, 607, et dépol.
- Effort important sur l'automatisation
 - Adaptation autonome du fonctionnement aux conditions atmosphériques pour limiter le coût en opérateur
 - Pilotage à distance et systèmes de sécurité automatiques
- Mise en place des flux en cours
- Post-Doc prévu pour début 2016
- Collaboration pour l'algorithmie avec ACTRIS
- Partenariat Gordien Strato (France) et Raymetrics (Grèce)

Perspectives 2015-2016

• Perspectives scientifiques

- Thèse DGA oct. 2015; LEFE ParisFog2 (2015-2017); ACTRIS-2 (interaction nuages-aérosols, calibration radar nuage); Post-doc; STSM ACTRIS
- Brouillard.
 - Développer des modèles conceptuels de formation et dissipation des brouillards pour ensuite développer des outils d'aide à la prévision
- Nuages hauts.
 - Caractériser les propriétés macro, microphysiques et radiatives des cirrus naturels et anthropiques.

Perspectives techniques

- Campagne à Roissy (Oct. 2015 Mar. 2016)
 - Apport de la télédétection active/passive (radar nuage BASTA, télémètre CL31 et radiomètre micro-onde HATPRO) pour mieux prévoir le brouillard
 - Interaction forte avec les prévisionnistes : retour sur l'aide à la décision
- Campagne ballons captifs
 - Inversion des signaux radar (brouillard) / lidar (pré-brouillard)

Développements algorithmiques

- Brouillard
 - En cours : diagnostic via le télémètre de la formation brouillard (2 post-doc), prévision à H-1
 - A venir : diagnostic via le radar nuage de la dissipation (thèse Oct. 2015)
- Nuages hauts
 - Inversion des signaux IPRAL : application des algorithmes ACTRIS (aérosols et nuages) + ROSEA (vapeur d'eau),
 - Application de STRAT, BASIC, GARRLIC, LIRIC

GT2. Etudes climatiques

Contributeurs: **S. Bastin**, M. Chiriaco, J. Badosa, M. Haeffelin, J.-C. Dupont, J. Lopez, M. Lothon, F. Lohou, J.-L. Barray, A. Colomb, C. Boitel, M.-A. Drouin, C. Dione, P. Yiou, F. Cheruy, H. Chepfer, S. Cloche, S. Pal

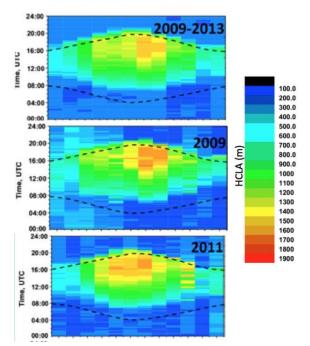
Labos impliqués: LATMOS, LMD, LA, IPSL, LamP, LSCE

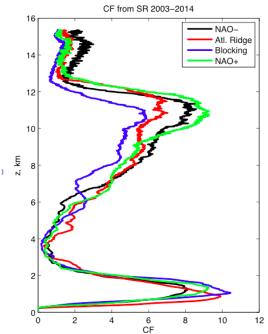
GT 'Etudes climatiques'

- i. mieux comprendre la variabilité climatique locale: discriminer les différentes sources de variabilité, en particulier rôle de la grande échelle et rôle des processus locaux surface-CLA-nuages-rayonnement
- ii. Est-ce que cette dernière décennie peut servir de période de référence du climat présent, pour quelles variables -> modèle.

• Défis techniques :

WCRP Climate Symposium 2014: « ...agencies should put a sustained effort into re-processing and reanalysing existing archived data to produce temporally homogeneous products to study climate variability and change "=> SIRTA-ReOBS = observations homogénéisées et réanalysées, en cohérence avec autres sites nationaux/internationaux: (poster grand public v+ poster A2+Chiriaco)


- i. nécessité d'avoir une structuration forte -> SOERE ROSEA (->ATMOS), ACTRIS, action COPERNICUS
- ii. nécessité de pérenniser l'effort (actuellement CDD)
- Questions sociétales associées:
 - i. Comprendre et anticiper extrêmes de T
 - ii. Enjeux en terme de qualité de l'air, demandes énergétiques, agro et écosystèmes
 - iii. Voir émerger des tendances pour mieux appréhender évolution future

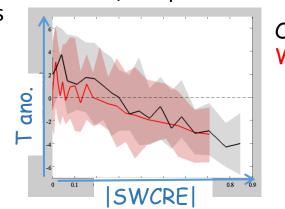


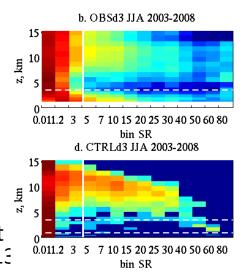
Caractérisation de la variabilité de différentes variables:

Variabilité de la hauteur de CLA: variabilités saisonnière et interannuelle des paramètres qui l'influencent [Pal et Haeffelin, 2015]

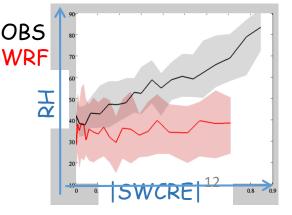
Quels nuages pour quel régime de temps et quel impact sur processus CLA et variabilité de T (amplitude thermique, cycle diurne) [Chiriaco et al., en prep]

- Quels proxys pour caractériser la variabilité climatique des différents paramètres et estimer d'éventuelles tendances?
- Identifier facilement des anomalies climatiques

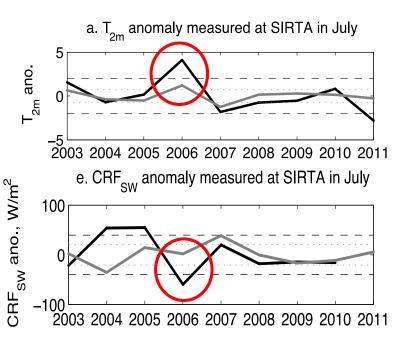



Evaluation de modèles: exploitation de la synergie instrumentale

- Comparaison modèle-obs pour nuages observés par lidar:
 - adaptation du simulateur lidar COSP au lidar sol et à une paramétrisation de microphysique de WRF;
 - réflexion sur méthodes de comparaison
- Cadre ANR REMEMBER: évaluation ensemble de modèles MED-CORDEX [Bastin et al., en prep]
- Rôle des intéractions surface/atmosphère sur cycles saisonnier et diurne de la température [Cheruy et al., 2012; Campoy et al., 2013 Bastin et al., soumis]
- Rôle des intéractions nuages/rayonnement sur variabilité journalière de T


Mauvais couplage surface-CLA-nuages dans WRF: Stage de 4 mois M2 ERASMUS (sept->dec 2015) pour évaluation/compréhension

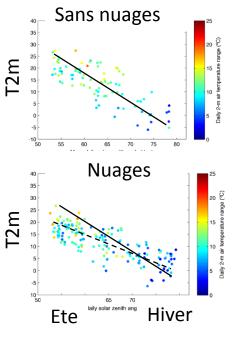
intéractions surface-CLA-nuages


MJJAS 2003-2011

- Rôle des nuages/interactions surface atmosphère dans variabilité climatique et extrêmes:
 - Canicule Juillet 2006: SIRTA-ReOBS + Méthode des analogues+ simulation régionale climatique WRF/MEDCORDEX

Déficit de nuages bas associé à situation synoptique. Amplification de l'anomalie de température par sol sec. [Chiriaco et al., 2014] + highlight in Science for Environnement Policy (EU) => POSTER M. Chiriaco

- Développement de l'analyse sur **multi-sites** et autres situations anormalement chaudes ou froides: post-doc ROSEA
- => talk à 11h . Article en préparation [Dione et al.]



Perspectives 2015-2016

• Perspectives scientifiques :

- Q1: Projet de thèse en collab. avec LA sur compréhension variabilité climatique 'multi-sites+simulation régionale'
- Q2: Quantifier effet réchauffant des nuages.
- Q3: émergence de tendance: combien d'années d'observations d'une variable (quelle obs) nécessaires pour voir émerger une tendance en fonction de sa variabilité naturelle?
- => Projet LABEX L-IPSL, Intéractions avec GT « variabilité et tendance » pôle OBS
- Q4: Etendre études à observations de qualité de l'air

© J. Badosa

• Perspectives techniques:

- Développement de SIRTA-ReOBS (intégration de nouvelles variables (région), extension temporelle, traitement)
- Diffusion/documentation
- Application de méthodes mathématiques et statistiques à l'analyse des observations => projet CDS (Center for Data Science, Paris-Saclay)
- Participation au SOERE ATMOS

GT3 Turbulence et Dynamique

CEREA: B. Carissimo, A. Chahine, E. Dupont, E. Gilbert, L. Musson-Genon, X. Wei

A. Faucheux, Y. Lefranc, T. Morand, S. Rozborski

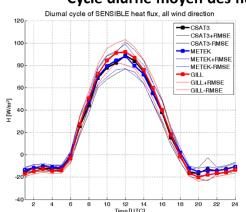
IPSL: J.C. Dupont, M. Haeffelin

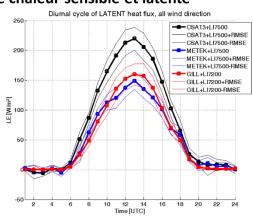
LMD: M.A. Drouin

LATMOS: R. Hallali, J. Parent du Châtelet

IPGP: D. Richard

GT 3. Turbulence et Dynamique


- Objectifs scientifiques majeurs
 - Etude expérimentale et modélisation des processus dynamiques dans la couche limite atmosphérique
 - Caractérisation en fonction des conditions météorologiques de la turbulence, des flux associés, et du développement de la couche de mélange
- Défis liés aux mesures et à leur exploitation
 - Caractérisation de la turbulence par la combinaison de différents instruments
 - Développement d'algorithmes et de méthodes d'analyse adaptées
- Questions sociétales associées
 - Qualité de l'air: étudier et modéliser les processus intervenant dans la dispersion à petite échelle
 - Impact sur les ouvrages, la production d'énergie (éolien), les phénomènes météo de plus grande échelle

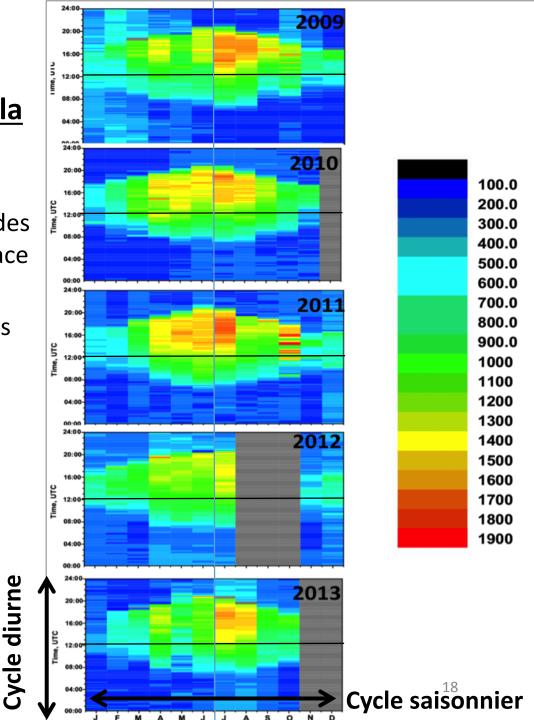


- Nouvelles mesures de référence des flux turbulents (latent et sensible) au SIRTA
 - Installation finalisée en avril 2015, station type ICOS, instruments de référence
 - Utilisation du logiciel EddyPro en collaboration avec IPGP et P2OA (cadre ROSEA), automatisation en cours
 - Intercomparaisons à finaliser (limitations des capteurs, avantages du close-path / open-path)

Cycle diurne moyen des flux de chaleur sensible et latente

sonique CSAT-3 sonique METEK

Vue sur les instruments de mesures des flux haute fréquence installés au SIRTA

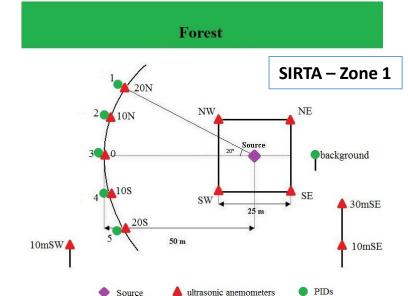

[⇒] Flux sensible : très bon accord entre les 3 soniques (différence <5%), nuit~-15W/m² et jour~90W/m²

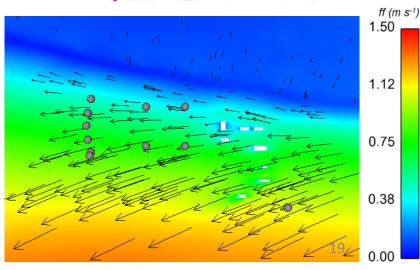
[⇒] Flux latent : différence importante de l'ordre de 35% à 12 TU. nuit~0W/m² et iour~[150 à 225 W/m²]

Climatologie de l'épaisseur de la couche de mélange

- Développement d'un algorithme (STRAT+) utilisant profils verticaux des aérosols (Lidar) et stabilité de surface (anémomètres soniques)
- STRAT+ appliqué à 5 ans de mesures
 SIRTA (2009-2013)
- → Cycle diurne mensuel moyen de l'épaisseur de la couche de mélange
- → Forte asymétrie matin / après-midi
- → Très forte variabilité intra- et interannuelle, bien corrélée à:
 - → Humidité du sol
 - → Flux de chaleur (sens./latent)
 - → Flux radiatifs (nuages)

Pal and Haeffelin, JGR 2015



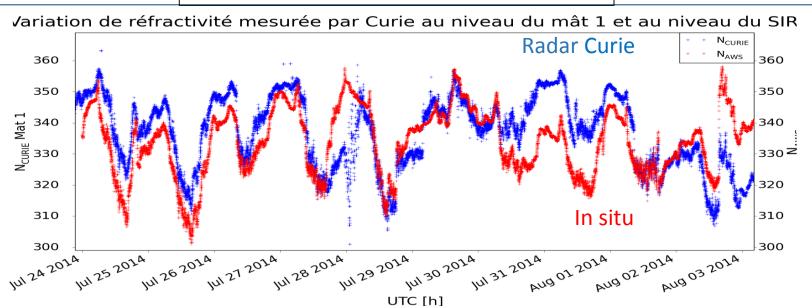

• Mesure et modélisation à micro-échelle de l'écoulement et de la

dispersion de polluants

 Objectif: améliorer la modélisation de la dispersion, notamment en conditions stables

- Mesures en continu avec un réseau de 12 anémo soniques
- Episodes de mesures haute fréquence de concentration d'un traceur passif en champ proche
- Thèse de Xiao Wei (CEREA) (2013-2015):
 - ✓ Influence des obstacles environnants sur l'écoulement et la dispersion
 - Caractérisation de l'anisotropie, du transport des structures
 - ✓ Analyse de 2 ans de données de turbulence et des épisodes de traçage, modélisation avec le code de CFD Code_Saturne
- Wei et al. 2014 (IJEP)
- 2 autres publications en cours

Campagne TeMeRAiRE (Test de la Mesure de la Réfractivité Atmosphérique par Radar à l'Echelle hectométrique) - thèse Ruben Hallali (LATMOS)



- deux mesures rapides des paramètres atmosphériques séparées par 150m - 1 scintillomètre

CEREA

Dispositif expérimental (en plus du SIRTA)

Évolution temporelle de la variation d'indice de réfraction atmosphérique (x10⁶) sur 10 jours

Perspectives 2015-2016

- Poursuite exploitation de la campagne TEMERAIRE
- Turbulence et dispersion
 - Poursuite des simulations avec Code_Saturne (modèle de turbulence du second ordre, modélisation des fluctuations de concentration, LES)
- Mesure des flux turbulents
 - Poursuite inter-comparaisons + mesures scintillomètre
- Hauteur de couche de mélange
 - Application de STRAT+ aux lidars/télémètres ICOS
 - Etude variabilité de l'épaisseur de couche de mélange en fonction du paramètre physique considéré
- Campagne de radiosondages
 - comparaison avec profils de vents mesurés au SIRTA

Posters sur les 4 thèmes présentés

GT 4. Aérosols et gaz réactifs Sources, processus et transport

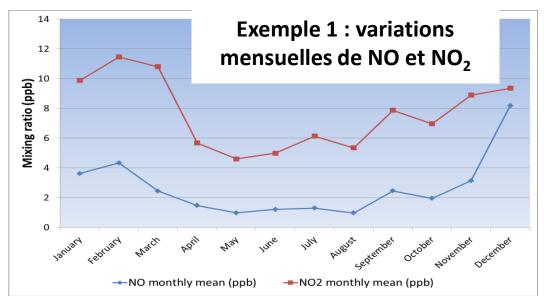
Labo	Personnes impliquées (2011-15)	Activités
LSCE	J. Sciare, V. Gros, JE. Petit, N. Bonnaire, D. Baisnée, F. Truong, J. Vinarnick, R. Sarda-Estève, I. Xueref-Rémy,	Caractérisation physico- chimique <i>in-situ</i> et en temps réel Etude de sources
INERIS	O. Favez, T. Amodeo, R. Aujay, S. Verlhac, J.E. Petit, A. Albinet, D. Srivastava	
	A. Colette, F. Meleux, B. Bessagnet	Télédétection
LMD, IPSL	L. Menut, S. Turquety, S. Stromatas, G. Cesana, H. Chepfer, JC Dupont, M. Haeffelin	Simulation numérique

• Objectifs scientifiques majeurs:

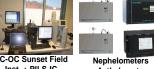
- i. Meilleure compréhension des sources et des mécanismes de transformation des principaux polluants gazeux et particulaires
- ii. Etude des phénomènes de transport à longue distance des couches d'aérosols dans la troposphère
- Défis techniques et méthodologiques:
 - i. Mettre en œuvre des instruments de pointe ... suffisamment simples et robustes pour pouvoir être utilisés en routine
 - ii. Disposer d'outils de traitement de données « automatisés »
 - iii. Développer les synergies entre les observations et les outils de simulation numérique (e.g., assimilation de données dans les modèles prédictifs)

• Questions sociétales associées:

- i. Enjeux sanitaires de l'exposition chronique à la pollution atmosphérique
- ii. Appui aux pouvoirs publics pour la gestion des épisodes de pollution (identification des sources et origines géographiques en temps quasi-réel)
- iii. Etude des tendances à long terme en lien avec l'évolution des activités humaines



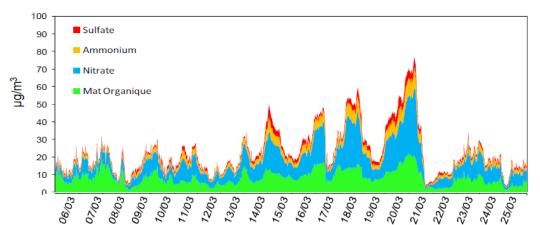
Résultat 1 : Observations sur le long terme des particules

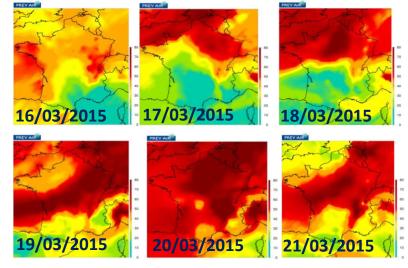

fines et gaz réactifs

Pérennisation et renforcement de l'instrumentation

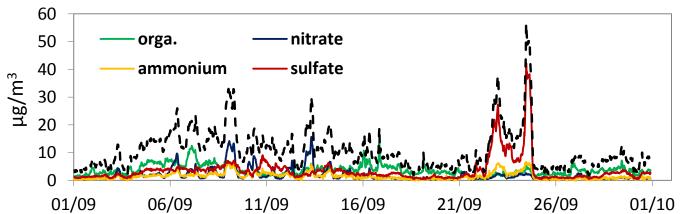
Exemple 2 : variations des espèces chimiques majeures au sein des aérosols submicroniques

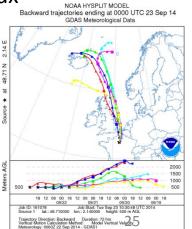
Thèse de Jean-Eudes Petit soutenue en Oct. 2014 (Petit et al., ACP, 2014 & 2015)





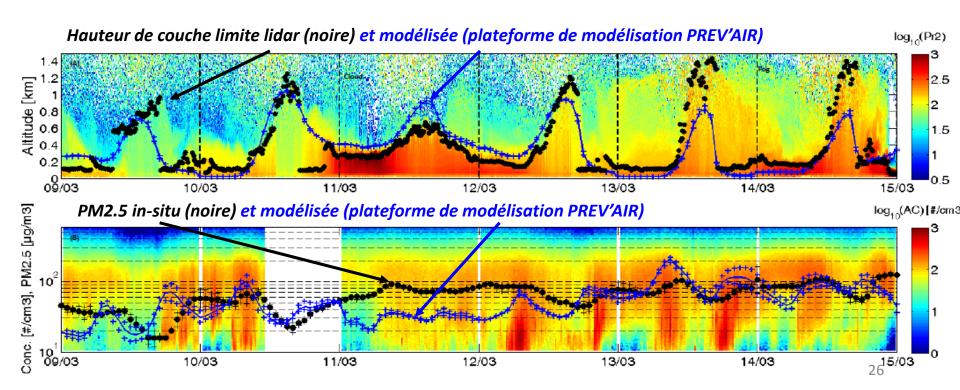
Institut


 Mars 2015: Episode printanier « typique », riche en nitrate d'ammonium



Septembre 2014: Panache riche en sulfate d'ammonium, lié aux

émissions volcaniques islandaises



- Résultat 3 : Analyse combinée des mesures (in-situ et télédétection) et sorties de modèle
 - Mars 2014 (Dupont et al., 2015)
 - Mieux comprendre les processus dynamiques et radiatifs pilotant l'événement de pollution extrême de Mars 2014 en région Parisienne.
 - Rôle clé de la hauteur de la couche limite

Perspectives 2015-2016

- Thèse en cours de D. Srivastava (2014-2017) : synergie entre mesures sur filtres et mesures en temps réel pour l'analyse des sources de pollution
- Thèse à venir de Y. Zhang (2015-2018) : étude de longue séries temporelles des mesures *in-situ* (> 5 ans)
- ACTRIS-2 (2015-2019):
 - Poursuite des activités d'observatoire du SIRTA sur les particules et espèces gazeuses réactives
 - Activités connexes au SIRTA : réalisation de deux intercomparaisons de ACSM à l'échelle europeénne.

GT5. Energies Renouvelables

Contributeurs: J. Badosa, J.-C. Dupont, M. Haeffelin, P. Drobinski, R. Plougonven, B. Jourdier, N. Kalecinski, J. Mathorel, A. Szantai, J. Nassar, V. Boudin, A. Migan, S. Le Gall, L. Musson-Genon, E. Dupont, S. Dubost, B. Cotte, J.-L. Queri, T. Elias

<u>Labos Impliqués :</u> IPSL, LMD, UME-ENSTA, EDF-CEREA, EDF HELP, LPICM, GeePs, LIMSI, Hygeos, ILV

GT Energies Renouvelables

- Ce groupe de travail a été formellement créé en fin 2014 et a des activités de recherche sur deux axes de recherche avec des objectifs distincts :
- Energie éolienne :
 - Estimation de la ressource éolienne à échelle locale et régionale (LMD)
 - Modélisation de la dynamique de couche limite avec le code Mercure-Saturne (CEREA)
 - Influence des conditions météorologiques sur le bruit d'une éolienne (UME-ENSTA).
 - Mesure et caractérisation du rendement éolien (SIRTA, EDF HELP)
 - ? ...
 - Enseignement (LMD, EDF HELP).
- Energie solaire:
 - Estimation et mesure de la ressource : photovoltaïque (LMD, CEREA) et Concentrated Solar Power CSP (Hygeos)
 - Modélisation du rayonnement (2D, 3D) : Modèle Saturne (EDF-CEREA).
 - Prévision de l'énergie solaire: outil PVSCOPE (LMD), prévision J+1 d'ensemble (EDF-CEREA), imageurs sol (EDF-CEREA).
 - Caractérisation et optimisation du rendement PV en conditions réelles (GeePs, LPICM, LIMSI, LMD).
 - ? ...
 - ➤ Enseignement (LMD, GeePs, LPICM, LIMSI, EDF-HELP, EDF-CEREA, ILV)

Plateformes PV et éolienne

SPECIFICITES TECHNIQUES

Puis.=400W Hauteur de l'axe = 6m Longueur des pâles = 1,5m Tension = 24V Vit. Démarrage = 3m/s pour 3 pâles, 0,8m/s pour 6 pâles

Soutenances de thèse :

- Thomas Mambrini, LGEP, Déc. 2014
 - Caractérisation des panneaux PV en conditions réelles
- Natacha Kalecinski, LMD, Avr. 2015
 - Processus nuageuses et prévisibilité du rayonnement solaire
- Bénédicte Jourdier, LMD, Sep. 2015
 - Estimation et évaluation de la ressource éolienne
- Marko Pavlov, LIMSI,
 - Modélisation et optimisation du couplage PV+miroirs

Perspectives 2015-2016

- TREND-X: le projet transdisciplinaire de l'École polytechnique autour les énergies renouvelables
 - Création d'un micro-réseau intelligent au SIRTA
 - Un Ingénieur de recherche en CDI comme chef de projet
 - 10 labos X et 18 labos Paris-Saclay
 - Voir présentation de Philippe Drobinski (porteur TREND-X)
- Evaluation des modélisations météo pour la ressource:
 - éolienne (Projet FOREWER, une thèse LMD)
 - solaire (une thèse au CEREA, un post-doc LMD-EDF R&D)
- Prévision de la ressource:
 - Adaptation au SIRTA de PVSCOPE: outil de prévision PV (LMD)
- Enseignement
 - TPs innovant en photovoltaïque (GeePs, LMD, LIMSI, LPICM, ILV).
 - TPs sur le terrain à partir d'automne 2015.

Oraux et posters EnR

Oraux

- Anne Migan (GeePs): Synthèse des activités photovoltaïques au SIRTA
- Philippe Drobinski (LMD): Présentation de TREND-X

• Posters:

- Les centrales thermiques à concentration solaire: le visibilimètre pour estimer l'atténuation du rayonnement solaire par les aérosols (T. Elias, HYGEOS)
- Le micro-réseau intelligent Bernard Malherbe du GeePs (T. Mambrini, GEEPS)
- PV performance study From SIRTA research platform (Chun Yee Chia, LMD)
- Modelling and Measurement of Spectral Solar Irradiance at SIRTA: Applications to Photovoltaic Performance Studies (Yi Hong, LMD).
- Le logiciel PVSCOPE (J. Mathorel, LMD)
- Paramètres prédictifs du rayonnement en début de matinée à partir de scénarios de nuages la nuit sur l'île de la Réunion (N. Kalecinski, LMD)
- Vitesse de déplacement des nuages : mesures sol et spatiales (A. Szantai, LMD)

Merci de votre attention...

... questions?