



# Modélisation LES de la microphysique du brouillard au SIRTA

M.Mazoyer, <u>C.Lac,</u> T.Bergot, O.Thouron

Journée scientifique SIRTA 2016

### Introduction

- Meilleure compréhension du brouillard grâce aux nombreuses campagnes de mesure : Cardington, Fog-82, Po Valley, ParisFog
- Progrès avec simulations 1D (Bergot et al., 2007...) : importance de la résolution verticale
- Simulations LES (résolution métrique) devenues indispensables pour représenter les hétérogénéités et progresser dans la compréhension (Nakanishi, 2000 ; Bergot, 2013)
- La plupart des LES considèrent une surface homogène (sauf Bergot et al., 2015 pour bâtiments) : 1ère LES de brouillard avec végétation hétérogène
- Modèles : Grosses erreurs dans les champs microphysiques
   Observations
   Simulations

```
LWC ~ [0.05-0.3] g.m<sup>-3</sup>
```

```
Nc ~ [10-200] cm<sup>-3</sup>
Mazoyer et et al. 2016 : < 150 cm<sup>-3</sup>
[800-1000] cm<sup>-3</sup> (Chine)
```

```
LWC ~ [0.2-0.6] g.m<sup>-3</sup>
```

Nc fixe : 100 ou 300 cm<sup>-3</sup> Nc pronostique : 250 cm<sup>-3</sup> (Stolaki et al., 2015) 800 cm<sup>-3</sup> (Zhang et al., 2014)



• Un terme manquant ?



- 1. Cas d'étude et validation de la simulation de référence
- 2. Hétérogénéités dans le brouillard
- **3**. Tests de sensibilité : impact des arbres, du dépôt, de la résolution
- 4. Conclusion/perspectives



### 1. Cas d'étude : spécificité du SIRTA



Forte hétérogénéité de surface – Barrière d'arbres (Zaïdi et al., 2013)

**88 % des brouillards radiatifs se forment en altitude** (dont cas d'étude)



### **1. Cas d'étude : spécificité du SIRTA**



#### Forte hétérogénéité de surface – Barrière d'arbres (Zaïdi et al., 2013)

**88 % des brouillards radiatifs se forment en altitude** (dont cas d'étude)

### Cas du 15 novembre 2011 (PréviBoss) <sup>1</sup>

( Cas de Stolaki et al., 2015)

Initialisation à partir du sondage de Trappes du 14/11/11 à 23h20 modifié pour correspondre aux observations de basses couches du SIRTA







METEO FRANCE

- Dx=Dy=**5m** ; Dz=**1m**, 156 niv jusqu'à 1500m
- Turbulence 3D longueur de mélange Deardorff
- Rayonnement ECMWF : RRTM + Morcrette
- SURFEX : ISBA : herbe + barrière d'arbres de 15m





- Dx=Dy=**5m** ; Dz=**1m**, 156 niv jusqu'à 1500m
- Turbulence 3D longueur de mélange Deardorff
- Rayonnement ECMWF : RRTM + Morcrette
- SURFEX : ISBA : herbe + barrière d'arbres de 15m

- Prise en compte de la **traînée des arbres** (Aumond et al. 2013) :  $\alpha = u,v,TKE$ 

$$\frac{\partial \alpha}{\partial t}_{DRAG} = -C_d A_f(z) \alpha \sqrt{u^2 + v^2}$$







- Dx=Dy=**5m** ; Dz=**1m**, 156 niv jusqu'à 1500m
- Turbulence 3D longueur de mélange Deardorff
- Rayonnement ECMWF : RRTM + Morcrette
- SURFEX : **ISBA** : herbe + barrière d'arbres de 15m

- Prise en compte de la **traînée des arbres** (Aumond et al. 2013) :  $\alpha = u, v, TKE$ 

$$\frac{\partial \alpha}{\partial t}_{DRAG} = -C_d A_f(z) \alpha \sqrt{u^2 + v^2}$$

- Schéma **microphysique chaude à 2 moments** Khairoudinov-Kogan (2000) – Geoffroy et al. (2008) : Nombre d'aérosols activés ( $N_{CCN}$ ) et nombre de gouttelettes (Nc) pronostiques :  $N_{CCN}$  basé sur diagnostique de  $S_{MAX}$  et ajustement à saturation







- Dx=Dy=**5m** ; Dz=**1m**, 156 niv jusqu'à 1500m
- Turbulence 3D longueur de mélange Deardorff
- Rayonnement ECMWF : RRTM + Morcrette
- SURFEX : **ISBA** : herbe + barrière d'arbres de 15m

- Prise en compte de la **traînée des arbres** (Aumond et al. 2013) :  $\alpha = u, v, TKE$ 

$$\frac{\partial \alpha}{\partial t}_{DRAG} = -C_d A_f(z) \alpha \sqrt{u^2 + v^2}$$

- Schéma **microphysique chaude à 2 moments** Khairoudinov-Kogan (2000) – Geoffroy et al. (2008) : Nombre d'aérosols activés ( $N_{CCN}$ ) et nombre de gouttelettes (Nc) pronostiques :  $N_{CCN}$  basé sur diagnostique de  $S_{MAX}$  et ajustement à saturation

- Ajout d'un nouveau processus : **Dépôt du brouillard sur la végétation** : uniquement au 1er niveau du modèle pour l'herbe et sur 15 m pour les arbres :  $V_{\text{DEP}} = \rho_a \cdot r_c \cdot V_{\text{DEP}}$  avec  $V_{\text{DEP}} = 2 \text{ cm/s}$ Katata (2014) : 2 cm/s <  $V_{\text{DEP}}$  < 8 cm/s pour végétation basse

### **1. Evolution thermodynamique**



### 1. Microphysique simulée à 3 m





Surestimation du nombre de petites gouttelettes Sous-estimation du nombre de grosses gouttelettes Limite de distribution monomodale

METEO FRANCE

## **1. Diagnostic de Visibilité pour le brouillard**

1. Uniquement à partir du **contenu en eau liquide** (LWC)

2. A partir du **contenu en eau liquide (LWC) et de la concentration de gouttelettes (Nc)** 

 $VIS = a / (LWC)^b$ 

Plus connue : Kunkel (1984) a=0.027 b=0.88

 $VIS = c / (LWC.Nc)^d$ 

Gultepe (2006) : c=1.002 d=0.6473 Zhang (2014) : c=0.187 d=0.34



## **1. Diagnostic de Visibilité pour le brouillard**

1. Uniquement à partir du **contenu en eau liquide** (LWC)

2. A partir du **contenu en eau liquide (LWC) et de la concentration de gouttelettes (Nc)** 

 $VIS = a / (LWC)^b$ 

Plus connue : Kunkel (1984) a=0.027 b=0.88

 $VIS = c / (LWC.Nc)^{d}$ 

Gultepe (2006) : c=1.002 d=0.6473 Zhang (2014) : c=0.187 d=0.34

#### **Uniquement à partir des observations**



Zhang (2014) mieux adapté aux observations



### **1. Diagnostic de Visibilité pour le brouillard**



Zhang (2014) mieux adapté aux observations

Gultepe (2006) mieux adapté aux défauts du modèle



METEO FRANCE







### Phase mature du brouillard

Plus d'impact des hétérogénéités de surface -Ondes de KH au sommet (Bergot et al. 2015)



### 3. Tests de sensibilité : Impact des arbres



SANS ARBRE : Vent surestimé, turbulence sous-estimée et gradient vertical inversé









# **3. Tests de sensibilité : Impact des arbres**

### 3. Tests de sensibilité : Impact du dépôt



Pas de dépôt sur la hauteur des arbres

Pas de dépôt sur la végétation



### 3. Tests de sensibilité

120-REF 110 NDT Sans dépôt 100 NDG WE3 90-Sans arbre NTR 80-DX2 **Résolution effective** LWP (g.m-2) 70 OBS plus groșsière 60 50 40 30 REF 20 Dx=2m 10-0 23:20 5:20 11:20 0:20 1:20 2:20 3:20 4:20 6:20 7:20 8:20 9:20 10:20 Time (UTC)

**Contenu intégré en eau (LWP) :** forte incertitude 20 g/m<sup>2</sup> (Lohnert et al., 2003)



### 4. Conclusion - Perspectives

- SIRTA : Formation des brouillards élevés et hétérogénéités sur la formation au sol liées à l'hétérogénéité de surface ; probablement encore sous-estimée dans cette simulation. → Intérêt d'une plus large couverture en surface des observations
- Importance du dépôt des gouttelettes pour simuler correctement les grandeurs microphysiques près du sol :
  - → Intérêt de mesures de dépôt
  - $\rightarrow$  Terme à prendre en compte dans AROME ?

→ Développer une paramétrisation plus complète (Zhang et al., 2014) ?

Microphysique :

→ Evaluer le nouveau schéma microphysique à 2 moments LIMA (Vié et al., 2016) destiné à AROME : approche multi-modale des aérosols

→ Evaluer la paramétrisation de l'activation : tester une sursaturation pronostique (Thouron et al., 2012)

→ Intérêt de mesures microphysiques 3D

