

_imsi

Amélioration de L'Efficacité Photovoltaïque par l'emploi de miroirs plan fixes : Projet « ALEPh »

Marko PAVLOV^{a,b}, Vincent BOURDIN^a, Anne MIGAN-DUBOIS^b, Jordi BADOSA^c, Michel PONS^a, Martial HAEFFELIN^c et Joaquim NASSAR^d

^a Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur, CNRS, Orsay
 ^b Laboratoire de Génie Electrique et Electronique de Paris, CNRS-Supélec-Universités UPMC et Paris-Sud 11, Gif sur Yvette
 ^c Laboratoire de Météorologie Dynamique-Institut Pierre-Simon Laplace, CNRS-École Polytechnique, Palaiseau
 ^d Laboratoire de Physique des Interface et des Couches Minces, CNRS-École Polytechnique, Palaiseau

Plan

- 1. <u>Contexte, dispositif</u> <u>expérimental</u>
- 2. Modélisations
- 3. Perspectives

Contexte

Renouvelable (annuelle) Finie (totale)

Journée Scientifique SIRTA 23/06/2016

Collecter mieux le rayonnement direct et diffus

Installation classique

Installation PV-miroirs au SIRTA

Source : tritec-energy.com

La plate-forme ALEPh :

Améliorer le productible électrique des modules photovoltaïques en concentrant légèrement le flux solaire par des miroirs plans.

→ Développer un modèle thermo-électrique permettant de dégager des règles claires d'optimisation

Instrumentation

Instruments ALEPh

(I-V, T_{MOD,} POA Irradiance)

- SourceMètre Keithley 2635A
- Multiplexer Switch Keithley 3706A
- Sondes de Température Pt-100 class-A
- Capteurs de l'Éclairement RG-100

Mesures I-V (une matinée claire)

Module *a*-Si Frontal

Module *a*-Si Equipé de Réflecteur

Effet de concentration

- Augmentation du I_{sc} due à l'irradiance élevée
- Baisse du V_{oc} due à la température élevée

Augmentation globale du P_{MPP}

Gains en énergies produites quotidiennes

2 ans de mesures

Gain annuel moyen:

≻ + 19.2%	<i>a</i> -Si
≻ + 8.58%	<i>p</i> -Si

Effets Thermiques

Plan

- 1. Contexte, dispositif expérimental
- 2. Modélisations
- 3. Perspectives

Modèle Optique Analytique (MOA)

(hypothèse de la rangée infinie)

Irradiance Directe: Soleil ponctuelle Irradiance Diffuse : Ciel uniforme Sky Cas 1: Ombrage F_{Sky-Ref} Sky-PV Reflector θ F_{Ref-P} b S (a) Shape factors for reflector-equipped installations \overline{D} F_{Sky-Grnd} Sky F_{Sky-Back} F_{Back-PV} Cas 2: Concentration hétérogène PN Bact θ' θ" α **F**_{Back-Grnd} **F**_{Grnd-PV} b Ζ S (b) Shape factors for classical installations, part 1 D **Beam Irradiance** Sky Cas 3: Dépassement 81 830t θ θ" α Back-PV (s _W) b Ο s' F_{O-Back} F_{O-PV} (c) Shape factors for classical installations, part 2 D

Journée Scientifique SIRTA 23/06/2016

Comparaison avec les technologies de système PV courantes

Gains optiques annuels *Ciel Clair et Climat Réel*

Gain annuel	D/L _{PV}	CIEL	SIRTA
ραιταρροιτα		CLAIN	2013
PV sans miroir à l'inclinaison optimale	3	47%	39%
	4	52%	41%
	5	55%	41%
« PV suiveur »	3	9%	9%
	4	13%	11%
	5	15%	11%

$$\mathsf{D} \ \textbf{7} \to \mathsf{L}_{\mathsf{REF}} \ \textbf{7}$$

Limitations des modèles simples

- Modèle Optique Analytique (Rangée Infinie)
 Concentration du flux direct surestimée
 Concentration du flux diffus supposée homogène
 Flux par cellule inconnu
- Modèle Électrique Empirique
 - Limité à l'éclairement homogène des cellules
 - Sous-estime les pertes dues à l'ombrage
 - Surestime les gains dus à la concentration

Modèle Optique de Tirs de Rayons (MOTR)

EDStaR (C++) – équipe StarWEST, Mines Albi, France
 Méthode de Monte-Carlo + Géométrie 3-D

Intégrale A (Test d'Ombrage)

Intégrale B (Contribution du Réfl.)

Flux Direct: échantillonnage du « sunshape »
 Flux Diffus: échantillonnage du ciel (voûte céleste)

Delatorre et al. (2014). Monte Carlo advances and concentrated solar applications. Solar Energy, 103, 653–681.

MOTR – Cartes de Flux

Flux Direct – Facteurs de Forme (BNI = 1 W/m²) Flux Diffus – Facteurs de Forme (DHI = 1 W/m²)

R1, ombrage

R1, ombrage (aucune)

(15 octobre 2014, 13:50 UTC)

Journée Scientifique SIRTA 23/06/2016

MOTR – Flux par Cellule

Modèle Electrique – Cellule PV (SPICE)

a-Si cell: modèle 1-diode + Merten + Bishop

p-Si cell: modèle 2-diode + Bishop

Modèle Electrique – Module PV (SPICE)

Module *a*-Si:

14 cellules a-Si en séries

Module *p*-Si :

 36 cellules *p*-Si en séries
 2 diodes bypass (faisant 2 « strings » de 18 cellules)

Calib'n et Vérif'n

(EDStar + SPICE + T_{mes})

Symboles = mesures Lignes = modèle

Un Algorithme Évolutif a été récemment développé pour calibrer les paramètres électriques

Journée Scientifique SIRTA 23/06/2016

p-Si R3

Vérification

a-Si R1

p-Si R1

a-Si R3

Modèle Thermique Empirique (MTE)

Sandia¹: $T_{Cell} = E \times \exp(C_1 + C_2 \times WS) + T_a$

Modèle proposé:

 $T_{Cell} = \{C_0 \times \boldsymbol{E}_{\boldsymbol{B}} + C_1 \times \boldsymbol{E}_{\boldsymbol{D}}\} \times \exp(C_2 \times \boldsymbol{WS}) + \boldsymbol{T}_{\boldsymbol{a}}$

E E Irrad. Globale Incidente
 E Irrad. Directe Incidente
 Irrad. Diffuse Incidente
 VS Vitesse du Vent T Température Ambiante

 $\begin{array}{c} {\rm C_0} \ 0.02914 \ ^{\circ}C. \ m^2. \ W^{-1} \\ {\rm C_1} \ 0.07937 \ ^{\circ}C. \ m^2. \ W^{-1} \\ {\rm C_2} \ -0.07061 \ s. \ m^{-1} \end{array}$

Irradiance diffuse
 chauffe les cellules
 PV plus que
 l'irradiance directe
 (effet spectral et
 géométrique)

¹ King, D. L. et al. (2004). *Photovoltaic array performance model*. United States. Department of Energy.

$T_{Cell} = \{C_0 \times E_B + C_1 \times E_D\} \times \exp(C_2 \times WS) + T_a$

Calibration faite avec 112 courbes *I-V* mesurées pendant 5 jours en mai 2014 (3 clairs, 2 couverts)

Prévision

Étude de Cas (IRM + Evans + MTE)

But: Quantifier l'effet du climat local

Stratégie: trouver 3 villes avec une latitude similaire mais *climats différents*

- □ St. John's (Canada, 47.56°N, 52.71°W) « coastal snow climate »
- Palaiseau (France, 48.71°N, 2.21°E) « maritime temperate climate »
- □ Bratislava (Slovakia, 48.15°N, 17.11°E) « continental temperate climate »

(valeurs moyens pour 2011-2014)

 $R \bowtie \rightarrow \beta$ optimale 7, Gain 7

Plan

- 1. Contexte, dispositif expérimental
- 2. Modélisations
- 3. <u>Perspectives</u>

Conclusions

Concept ALEPh

- Technique simple et peu coûteuse pour atteindre les gains significatifs en rendement système
- a-Si plus adapté que p-Si surtout du à la topologie des cellules (ex. « string mismatch »)
- Gains atteignables dépendent fortement de la latitude et du climat local

Modèle Multiphysique Précis

- Nouvelle méthodologie de modélisation et optimisation des concentrateurs PV en 3-D
- Extensible aux différentes configurations de réflecteurs et modules PV
- Code C++ est parallélisé, multiplateforme, et ne dépende que des composantes open source et/ou gratuites (ex. EDStaR, SPICE)

Jusqu'à **+30%** /mois Jusqu'à **+20%** /an

Perspectives

Modèle Thermique Avancé

Constant de temps des cellules PV

Effets Spectraux

- Réponse spectrale
- Réflectance spectrale
- Modèle Economique > LCOE

Prototype à grande échelle

Nous cherchons activement une collaboration ! Grid4Earth 2018 ?

Marko.Pavlov@polytechnique.edu

Journée Scientifique SIRTA 23/06/2016