

CONAIRE : AIR QUALITY FORECAST IN CHILE, SPECIFIC MODELLING OF WOOD BURNING EMISSIONS R. Herve¹ C. Derognat¹, E. Eriksson¹, S. Pinheiro¹, B. Bessagnet² ¹ ARIA Technologies, 8 rue de la ferme, Boulogne-Billancourt 92100, France

² Institut National de l'Environnement Industriel et des Risques, INERIS, 60550 Verneuil en Halatte, France

Context

- In Biobio Region, Chile, Air Quality is highly affected by wood burning emissions
- In winter, chilean Ministry of Environment take preventive measures to avoid air pollution episodes
- ARIA Technologies developped a regional air quality 72h-forecast, used as a decisionhelp system by the authorities

Specific modelling of wood burning emissions

- Emission factors used in Chile are 2 to 5 times higher than the ones used in Europe/USA
- CONAIRE takes into account local habits in stove operation
- It might account for partitioning of semi volatile organic compound (SVOC) during dilution
- INERIS degree-day algorithm adapted to

Equivalent wood burning emission factors							
CONAIRE	CITEPA	EMEP	US-EPA				
26.0	5.0	10.4	14.8				

CONAIRE system

- WRF-CHIMERE operational chain
- Regional emission inventory for LPS, Traffic, and residential heating
- Specific modelling of wood burning PM2.5 emission

LIDAR validation campaign

• Comparison between LIDAR observations and WRF Forecast to validate boundary layer modelling

local observations (Temperature, Wind Velocity and PM2.5 concentration)

)	U-Market and Andrew Andre								
	-1	4	9	14	19	24	29	34	
5	Temperature (°C)								

Results

• CONAIRE web visualization - regional air quality maps

• Validation in Kingston College station, May 2015, PM2.5 hourly concentrations

• Excellent Biais and correlation for PM2.5 (3-month validation)

Average results for three stations in the three main cities of Biobio Region

Average Absolute Bias (ug/m3)	Correlation			
6.15	0.91			
*3-month validation (May, June, July 2015) in Kingston College, LA Oriente and INIA stations				

Acknowledgements

This research was supported by the French Ministry of Economy (FASEP fund), The chilean Ministry of Environment, and ENGIE. The supports are gratefully acknowledged.

References

[1] Saide et al.: Air quality forecasting for winter-time PM2.5 episodes occurring in multiple cities in central and southern Chile, journal of Geophysical Research Atmospheres, (2016)

[2] Lipsky: Effects of dilution on fine particle mass and partitioning of semivolatile organics in diesel exhaust and wood smoke, Environmental Science and Technology, (2006)