# Thermal inversion influence on the mixing layer height during a record pollutant event at Paris megacity

Juan Antonio Bravo-Aranda<sup>1</sup>, Martial Haeffelin<sup>1</sup>, Gille Foret<sup>2</sup>, Valérie Gros<sup>2</sup>, Aline Gratien<sup>2</sup>, Jean-Charles Dupont<sup>1</sup>, Simone Kothaus<sup>1</sup>, Vincent Michoud<sup>2</sup>, Olivier Favez<sup>3</sup>, Marc-Antoine Drouin<sup>1</sup>

<sup>1</sup>Institut Pierre Simon Laplace (IPSL), France \*jbravo@Imd.polytechnique.fr <sup>2</sup>Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA, CNRS/UPEC/UPD) <sup>3</sup>Institut National de l'Environnement Industriel et des Risques (INERIS)

#### JSS, Palaiseau, 29 juin 2017



## **SRTA** Introduction

- Paris megacity suffers several pollution events per year affecting the health of its inhabitants
- Emergency actions to mitigate the pollution effects (for large pollution event)
  - These actions have a large socio-economic impact
- The magnitude of the pollution event is estimated using:
  - PREV'AIR chemistry-transport operational modeling system
  - CHIMERE chemical transport model
- However, there are differences between observations and simulations:
  - Up to 50% in the PM2.5 time series
  - Large uncertainties on NH3 and organic matter concentrations remain
- Differences due to uncertainties in both :
  - chemical processes
  - <u>dynamical and radiative processes</u>

#### Can we use the remote-sensing measurements to:

- Improve the knowledge of the dynamical processes?
- Contribute to the daily air-pollution forecasts?



#### Atmospheric dynamical processes and pollution events

Three different atmospheric dynamical processes leading decreases of the particular matter concentration (PM):

- 1. The advection of clean air masses
- 2. The dilution of the pollutants due to an increase of the Mixing Layer (ML)
- 3. Diffusion of pollutants from the ML to the free troposphere



 $\begin{array}{c} \text{Clean-air advection} \\ + \\ \hline \text{Dilution} \\ + \\ \hline \text{Diffusion} \end{array} \Rightarrow \uparrow \text{PM}$ 

Long period  $\Rightarrow$  pollution event





Doppler lidar: Leosphere, WLS70 3D wind components Vertical resolution:50 m [0,1-2 km] Temporal resolution: 10 min Horizontal wind accuracy: 0.1 m/s Wind direction accuracy: 2°



Backscatter lidar: Vaisala Ceilometer CL31 Backscattering intensity at 905 nm Vertical resol: 5 m Temporal resol: 30 s MLD determined using the STRAT+ (Pal et al., 2013)

Radiosondes: Modem M10 (at 00h and 12h UTC), Trappes 15 km West from SIRTA (MeteoFrance) TEOMS-FMDS: PM10 concentration

# **SIRTA** Pollution event: December 2016

- 29<sup>th</sup> November to 7<sup>th</sup> December 2016
- AIRPARIF network  $\rightarrow$  daily mean PM10 ~150 µg/m<sup>3</sup>
- Low wind speed (<2m/s)</li>
- Low MLD (<300 m)
- On 3<sup>rd</sup> December:

↑ ML and wind speed>5m/s → ↓PM10



Clear relationship between ML, wind speed and PM10



# **SIRTA** Pollution event: December 2016

 03/12 Vs 06/12: The temperature at 300 m increased 10°C! ⇒ strong inversion!



- Atmospheric thermal inversion blocks :
  - I. the ML growths (dilution)
  - II. the particle **diffusion** from ML to the free troposphere



Pollution events are linked to atmospheric dynamical processes!



#### Dilution



Diffusion

### Proxy:

wind speed

#### Mixing layer depth?

?

• Dilution is driven by the increase of the MLD from night-time to day-time:



• Thus, we define the dilution parameter as:  $D = \frac{1}{MLD \ at \ night}$ Low  $D \Rightarrow$  weak dilution Large  $D \Rightarrow$  strong dilution

- Diffution is driven by the intensity of the thermal inversions
- An air-mass bubble at surface level at temperature  $T_s$  will rise to the top of the inversion, Height( $T_{inv}$ ), if it is heated up to the adiabatic temperature of  $T_{inv}$ , named  $\theta_{inv}$
- The **diffusion** can be quantified by:

 $\Delta(\theta_{inv}, T_s) = \frac{\theta_{inv} - T_s}{\text{Height}(T_{inv})}$ 

named 'inhibition parameter'

 $\Delta(\theta_{inv}, T_s) \gg 0 \Rightarrow$  strong inversion  $\Rightarrow$  low diffusion

 $\Delta(\theta_{inv}, T_s) \ll 0 \Rightarrow$  no inversion  $\Rightarrow$  high diffusion





#### Proxy:

wind speed

 $\frac{MLD \ at \ noon}{MLD \ at \ night}$ 

Dilution



Diffusion

 $\Delta(\theta_{inv}, T_s)$  (inhibition parameter)

## **SRTA** PM2,5 Vs dynamical processes: 2012-2015

- Seasonal working daily PM2.5 values on 2012-2015
- ReObs database and radiosondes to derive the dynamicalprocess proxies
- ACSM  $\rightarrow$  aerosol chemical composition (origin/source)



## **SRTA** PM2,5 Vs dynamical processes: 2012-2015

#### Seasonal working daily PM2,5 on 2012-2015



| PROXIES                |                | Largest PM2,5 |                |
|------------------------|----------------|---------------|----------------|
|                        |                | SPRING        | WINTER         |
| DYNAMICAL<br>PROCESSES | Wind direction |               | Northeast      |
|                        | Wind<br>speed  |               | low<br>(<3m/s) |
|                        | Dilution       |               | <3             |
|                        | Diffusion      |               | low            |
|                        |                |               |                |
|                        |                |               |                |

- All 4 parameters are important.
- Low diffusion is required.

#### **SIRTA** PM2,5 Vs dynamical processes: 2012-2015





| PROXIES                |                   | Largest PM2,5 |        |
|------------------------|-------------------|---------------|--------|
|                        |                   | SPRING        | WINTER |
| DYNAMICAL<br>PROCESSES | Wind<br>direction | Northeast     |        |
|                        | Wind<br>speed     | -             |        |
|                        | Dilution          | <5            |        |
|                        | Diffusion         | -             |        |
|                        |                   |               |        |
|                        |                   |               |        |

- Wind direction is more important than in winter.
- For NE dir, high PM25 for both low and high wind speed if dilution is low.
- Some cases of high dilution, but associated with low wind speed.



#### PM2,5 Vs dynamical processes: 2012-2015



- Higher inhibition parameter in winter.
- Higher dilution in spring.

| PROXIES                |                   | Largest PM2,5 |                |
|------------------------|-------------------|---------------|----------------|
|                        |                   | SPRING        | WINTER         |
| DYNAMICAL<br>PROCESSES | Wind<br>direction | Northeast     | Northeast      |
|                        | Wind speed        | -             | low<br>(<3m/s) |
|                        | Dilution          | <5            | <3             |
|                        | Diffusion         | -             | low            |
| CHEMICAL               | main<br>component | NO3           | Organic        |
|                        | SO4/BC*           | 1,7           | 0,9            |

\*larger values means transported aerosols

SO4/BC:

- transported aerosol in spring! (advected from NE)
- Local aerosol in winter!

# **SIRTA** Concluding remarks

- Combination of backscatter and Doppler lidars allows a deeper analysis of dynamical processes
- Thermal inversion blocks :
  - I. the ML growths (dilution)
  - II. the particle diffusion from MLD to the troposphere
- Dynamical processes proxies are useful to identify the origin of the pollution events
- Winter pollution events: low dilution and diffusion
- Spring pollution events: Northeast wind sector (transported aerosol)

Future work:

• Derive a combined parameter that can be used as indicator of high PM25 risk.

## Thanks for your attention!

