

JSS2017

Evolution of fog and low stratus observed by satellite

Olivier Atlan ^{1,2} Martial Haeffelin ^{1,2} Jordi Badosa ^{1,2} André Szantai ^{1,2} Eivind Wærsted ^{1,2}

1 : LMD

dépasser les frontières

2: IPSL

Summary

- 1. Introduction
- 2. Case study: two consecutive but divergent fog events
- 3. Method: definition of satellite indicators
- 4. Results: follow-up of fog evolution
- 5. Conclusion

1. Introduction

Objectives & applications

Objectives:

- \Rightarrow intraday predictability of
 - fog and low stratus cover
 - ground irradiance: solar panels

Applications:

- \Rightarrow transports:
 - security
 - reducing delays
 - €,\$: reducing financial losses due to delays & cancellations
- => electricity production forecasts
 - for a better distribution and transmission system management
 - input parameters of storage strategy
 - €,\$: pricing & buy and sell opportunities on electricity market

What are the different forecasting methods for:

- fog evolution ?
- solar electricity production ?

Satellite & ground-based studies complementariness

in both cases, a model-to-prediction approach:

- identify key variables
- quantify order of magnitude and variability
- design conceptual models to transform observations to 0-6 hours forecasts

ground observations:

from below, local point of view

 \Rightarrow numerous instruments \Rightarrow in-situ & remote-sensing

geostationnary satellite:

from above, wide sightview from space

- \Rightarrow fixed point of view
- \Rightarrow uninterrupted temporal series of maps

2. Case study: two consecutive but divergent fog events

Consecutive but divergent fogs: a ground perspective 1/2

Strict definition of fog: horizontal visibility < 1km & water dropplets => fog => Fog on both 27 & 28th until 9am: same « experience » at ground level

Consecutive but divergent fogs: a ground perspective 2/2

=> GHI max is 4,5 times less by heavy fog compared to clear sky

Consecutive but divergent fogs: a satellite perspective

=> What would be the variables that would enable anticipating fog dissipation ?

3. Method: definition of satellite indicators

Selection of three satellite indicators

- 1. Cloud Type:
 - clusters of pixels: classification of meteorological situations
 - enables monitoring subsets of images with close physical properties

[satellite product from SAFNWC: EUMETSAT, MeteoFrance...]

- 2. Cloud Albedo based on visible high resolution channel:
 - ref: Mueller et al 2012
 - contrasted key figure growing with cloud optical depth
 - intermediate key figure for estimating ground irradiance using satellite-to-irradiance models: basis for solar panels applications
- 3. A new key figure at pixel level:
 - new proxy indicator for surface warming
 - based on variations of 10.8 µm IR channel for two consecutive images
 - notation: Δ(BT) 10.8 µm (K)

A new proxy indicator for surface warming 1/2

SIRTA-centered images of $\Delta(BT)$ 10.8 μm (K)

LIGHT FOG **HEAVY FOG** 9 am 2014 10 28 2014 10 27 0 0 30 - 30 20 20 20 20 - 10 10 40 40 0 0 60 60 -10-10-20 -20 80 80 -30-30 -40 20 40 60 20 60 80 40 80 0 0

• most of the image (green color): uniform signal, variation close to 0

• kind of waves (blue, red, yellow): very strong variations due to high cloud motion

=> seems there is no information about fog based on this $\Delta(BT)$ maps => is there a « hidden signal » below these high variations ?

A new proxy indicator for surface warming 2/2

=> A warming signal for light fog at 9 am indicates pixel or subpixel clear sky areas 14

4. Results: follow-up of fog evolution

Evolution of satellite key figures: clear sky

- source: sequence of 11*11 pixels SIRTA-centered maps
- evolution of average of (changing) clear-sky and fog/low stratus clusters/subsets

Evolution of satellite key figures: clear sky versus light fog

16

Evolution of satellite key figures: heavy fog versus light fog

5. Conclusion

Main results

We tested a new approach combining 3 satellite indicators on a case study:

- « cloud type » satellite product
- cloud albedo
- a new satellite key figure based on 10.8 µm channel

New satellite key figure has following properties:

- physical meaning: related to warming/cooling of the surface which is a key variable of fog evolution
- clear contrast for light fog / heavy fog / clear sky
- enables identification of fog dissipation for the case study

LIGHT FOG 9 am [+ HIGH CLOUDS]

HEAVY FOG 9 am [+ HIGH CLOUDS]

Perspectives

Generalization study:

- check application to hybrid/multilayer situations
- check the results over a larger period of time
- study new key figures

Modeling:

- quantify orders of magnitudes of variables
- quantify variability
- characterize scenarios of evolution for intraday forecast

Thanks for your attention !

olivier.atlan@lmd.polytechnique.fr

Questions?

Bibliography

- Wærsted et al 2017 Radiation in fog Quantification of the impact on fog liquid water based on ground-based remote sensing
- Mueller et al 2012 A new algorithm for the satellite-based retrieval of solar surface irradiance in spectral bands
- Tardif & Rasmussen 2007 Event-based climatology and typology of fog in the New York City Region

