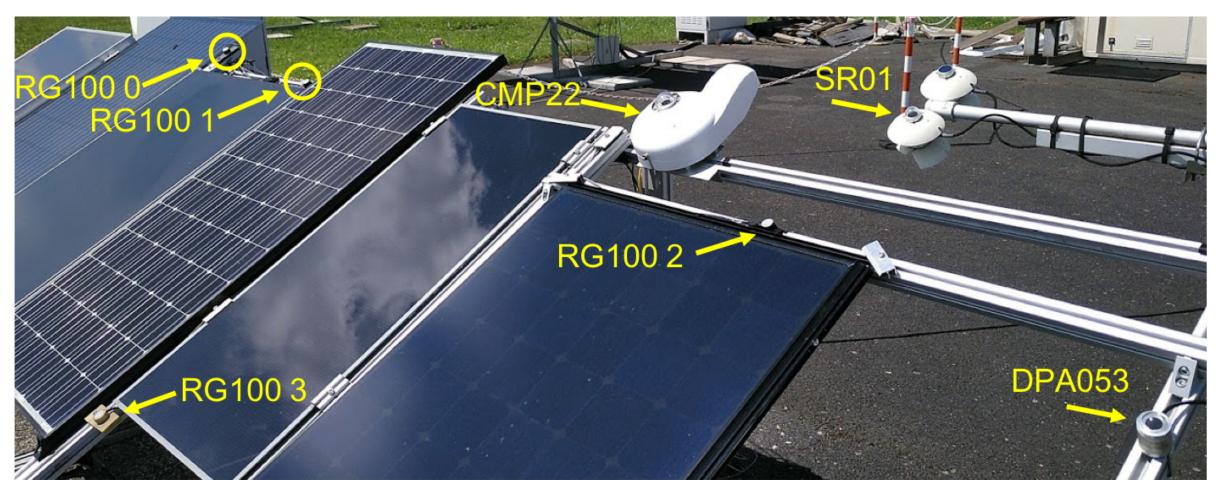
Intercomparison campaign of solar radiometers: preliminary results

Site Instrumental de Recherche par Télédétection Atmosphérioui

Jordi Badosa (SIRTA-LMD), Anne Migan-Dubois (GeePs), Vincent Bourdin (Limsi), Pascal Ortega (UPF), Christine Abdel-Nour (GeePs)

INTRODUCTION


CAMPAIGN SET-UP

Solar radiation measurements (SRM) are needed in photovoltaics (PV) for:

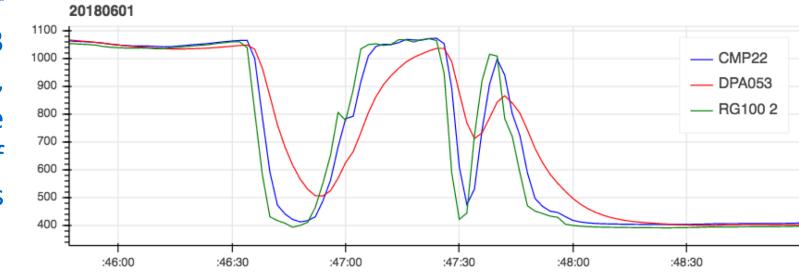
- Resource assessment _
- Efficiency evaluation
- Performance analysis
- Forecasting _

test bench was Since 2014, a installed to study PV modules under

Seven radiometers where installed on the plane of the PV modules (27^o tilt to the South). Four silicon quantum sensors (RG100, from Solems), two second class* pyranometers (SR01) from Hukseflux and DPA053 from LSI) standard* secondary and one pyranometer (CMP22 from Kipp & Zonen).

Geeps Linsi Lipicn TRENDY

real-life conditions. The bench has permanent SRM with RG100 0 and SR01 sensors (see photo).


two-week campaign A was undertaken to assess for the quality and calibration of these radiometers.

METHOD AND RESULTS

ISO 9060 Pyranometer Classification

	SECONDARY STANDARD	FIRST CLASS	SECOND CLASS
Response time	< 15s	< 30s	< 60s
Zero Offset-A	+ 7 Wm- ²	+ 7 Wm-²	+ 7 Wm-²
ero Offset-B	± 2 Wm- ²	± 2 Wm-²	± 2 Wm-²
Non-stability	± 0.8%	± 1.5%	± 3%
Non-linearity	± 0.5%	± 1%	± 3%
Directional Response	± 10 Wm-²	± 20 Wm- ²	± 20 Wm- ²
Spectral selectivity	± 3%	± 5%	± 10%
Temperature response	± 2%	± 4%	± 8%
Tilt response	± 0.5%	± 2%	± 5%

Time responses (95%) for RG100, CMP22 and DPA053 <1s, and 18s, **5**s are respectively. The figure shows about 3 minutes of with **2**s measurements sampling steps.

Time sampling:

Three measurement systems where performing the measurements at different samplings:

- RG100 0,1,3: 50 seconds

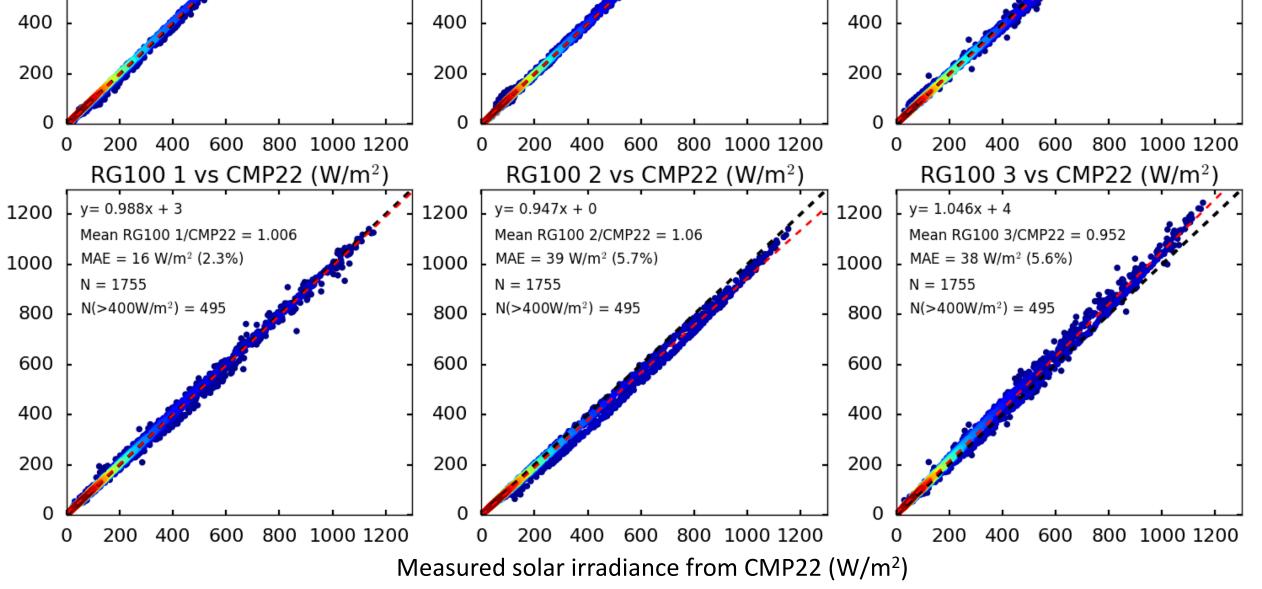
1400

≥ 1200

1000

800

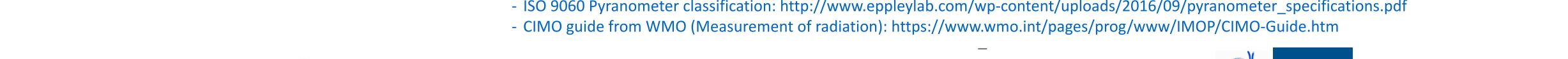
600


400

200

- RG100 2, CMP22 and DPA053: 2 seconds
- SR01: 10 seconds

For a fair comparison, data was averaged at 5 minutes steps and only periods with stepby-step variability of <100W/m² where kept (black dots in the figure on the right). CMP22 was considered as reference and three comparison metrics where considered: 1) Linear fit, 2) the ratio of the average measurements and 3) the mean absolute error calculation. For these two latter, only measurements > 400 W/m² where considered.



REMERCIEMENTS

This work was undertaken under the frame of TREND-X research program from Ecole Polytechnique

REFERENCES

- RG100 sensor from Solems: http://www.solems.com/mesure-du-rayonnement-solaire
- CMP22 from Kipp & Zonen : www.kippzonen.com/Product/15/CMP22-Pyranometer
- DPA053 from LSI: http://www.lsi-lastem.it/en/products/meteorological-sensors/solar-radiation
- SR01 from Hukseflux: https://www.hukseflux.com/sites/default/files/product_manual/NR01_RA01_manual_v1710.pdf

