RTA

SITE INSTRUMENTAL DE RECHERCHE PAR TÉLÉDÉTECTION ATMOSPHÉRIQUE

QUALITY CONTROL TESTS FOR IV CURVES AND EXTRACTION OF MODELING PARAMETERS FOR FIVE PHOTOVOLTAIC TECHNOLOGIES AT SIRTA, PALAISEAU

MUHAMMAD AMMAR KHAN (muhammad-ammar.khan@polytechnique.edu) – Laboratoire de Météorologie Dynamique, LMD Jordi Badosa (LMD), Anne Migan (GEEPS), Vincent Bourdin (LIMSI) – Supervisors

INTRODUCTION

At SIRTA Observatory, a photovoltaics test bench comprising of 5 commercial modules of different technologies was set up. This test bench allowed continuous monitoring of current-voltage (I-V) characteristics of modules along with a number of different of meteorological parameters. Main Characteristics of the five modules are listed in Table 1 whereas Figure 1 shows there arrangement at the observatory.

Name	Technology	I _{SC} (A)	$V_{OC}(V)$	P _{MAX} (W)
Sharp	Tandem Microamorphous (a-Si/µ-Si)	3.45	59.80	128
FranceWatts	Monocrystalline silicon (c-Si)	8.64	37.67	250
SolarFrontier	Thin Film chalcogenide (CIS)	2.20	108.0	150
Panasonic	Heterojunction Silicon/ Amorphous (HIT)	5.85	52.40	240
FirstSolar	Thin Film cadmium telluride (CdTe)	1.94	60.80	82.5

Table 1: Characteristics of Five modules at SIRTA Observatory

OBJECTIVES

METHODOLOGY						
Quality Control Tests	5 Parameters Extraction					
Quality Control Filters were developed using the information and requirements highlighted in: a. International Standards (IEC 61724) ^[1] i. IEC 61724 ii. Australian Technical Guidelines for Photovoltaics. ^[2] b. Best Practices ^[4] and Previous Works c. Self-Analysis	Estimation of characteristic parameters using Single Diode Model, which is one of most basic equivalent circuit model including: a. Current Source (I_{PV}) b. Diode (having current I_D) c. Series Resistance (R_S) d. Parallel Resistance (R_P)					
Filters were applied to the data of all 5 technologies and results were compared.	Parameters were extracted using two estimation methods.					
Translation to STC	 Method 1 involved use of Gaussian Iterations to solve the equations for finding unknown parameters. Method 2 involved usetabling of maximum status. 					

RESULTS

Translation to STC

Values of Correction Factors for STC Translation								
Correction	Sharp	FranceWatts	SolarFrontier	Panasonic	FirstSolar			
Factor	Tandem (a-Si/µ-Si)	Monocrystalline (c-Si)	Thin Film (CIS)	Heterojunction (HIT)	Thin Film (CdTe)			
Procedure 1								
$R_{S}\left(\Omega ight)$	4.150	0.454	6.480	0.600	4.375			
$\mathbf{K} (\Omega^{\circ} \mathbf{C})$	-0.034	0.016	-0.089	0.027	0.064			
Procedure 2								
a	0.040	0.035	0.054	0.035	0.027			
$\mathbf{R'}_{\mathbf{S}}(\mathbf{\Omega})$	1.298	0.367	3.253	0.296	1.401			
Κ' (Ω/° C)	-0.031	0.018	-0.134	0.023	0.073			

Table 3: Values of Correction Factors for Procedure 1 and Procedure 2

Figure 5: IV Plots using Estimation Method 1 and 2 for SolarFrontier (left) and Panasonic (right) at STC

Figure 4: Normalized P_{MAX} after STC translation using Procedure 1 (left) and Procedure 2 (right) grouped by changes in POA

Technology	Sharp	FranceWatts	SolarFrontier	Panasonic	FirstSolar
% of Points having P _{MAX} Deviation <=10%	94%	59%	94%	86%	76%

Table 4: % of Total Points having P_{MAX} Deviation <=10 for all 5 technologies

40

Figure 6: IV Plots using Estimation Methods 1 and 2 for SolarFrontier (left) and Panasonic (right) at 08:44 am 26th July, 2018

Values of 5 Parameters at STC						
Technology	Method	I _{PV} (A)	I ₀ (A)	R _s (Ω)	R _P (Ω)	Α
Chama	1	3.45	0.000504	0.04932	184	1.48
Sharp	2	3.45	0.000165	0.151	155	1.30
FranceWatts	1	8.64	2.77e-11	0.348	3803	0.92
	2	8.64	2.11e-11	0.315	21825	1.00
SolarEroption	1	2.20	0.000654	0.0499	1466	2.89
Solarrontier	2	2.21	0.000033	1.00	437	2.10
Panasonic	1	5.85	4.87e-09	0.287	3641	1.36
	2	5.85	9.55e-09	0.257	5853	1.40
FirstSolar	1	1.94	0.000011	0.049	370	1.28
	2	1.94	0.000014	0.034	815	1.30

Table 5: Values of 5 Parameters using Method 1 and Method 2 at STC

REFERENCES

- IEC61724. (1998). Photovoltaic system performance monitoring Guidelines for measurement, data exchange and analysis. BRITISH STANDARD, BSEN, 1-20.
- Jessie Copper, A. B. (2013). Australian Technical Guidelines for Monitoring and Analysing Photovoltaic Systems V1. The Australian Photovoltaic Institute (APVI), 0-45.
- IEC60891. (2009). Photovoltaic devices Procedures for temperature and irradiance corrections to measured I-V characteristics.
- Gabi Friesen, W. H. (2018). Photovoltaic Module Energy Yield Measurements: 4. Existing Approaches and Best Practice. INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME, 1-134.

CONCLUSION

- Quality Control tests removed anomalies from data which was used for modelling. Technologies with lower value of I_{SC} are more sensitive to irradiance and have maximum percentage of data filtered.
- Procedure 2 of IEC 60891 is more suitable for STC Translation having less PMAX deviation and better fit of IV curves. FranceWatts have maximum P_{MAX} deviation and should be monitored to determine reason of performance losses.
- Estimation Method 1 is more suitable for determining parameter values at STC or any time step using measured IV curves as compared to Method 2.
- Values of parameters at STC can be set as reference and used with models like De Soto to predict IV Characteristics.

This work was conducted in the frame of the TREND-X research program of Ecole Polytechnique,

supported by Fondation de l'Ecole Polytechnique.

