Performance Analysis and Modelling for the PV Power Plant at GeePs

ZHANG Yanan – École Polytechnique (GeePs, yanan.zhang@polytechnique.edu) Jordi Badosa – LMD, Vincent Bourdin – LIMSI, Anne Migan – GeePs, Christine Abdel Nour - GeePs

INTRODUCTION - OBJECTIVES

SRTA

SITE INSTRUMENTAL DE RECHERCHE

PAR TÉLÉDÉTECTION ATMOSPHÉRIQUE

METHODOLOGY – SETUP DESCRIPTION

- A classical photovoltaic power plant is composed of PV modules, power inverter, MPPT, irradiance and temperature sensors for system's behaviour assessment.
- Evaluating the efficiency of PV system, illustrating the power generation situation in real time can give us a visual impression of the behaviour of PV power plant during a period or a specific day.
- This poster aims for assessing the performance of the PV power plant at GeePs by 4 indicators – DC energy generation, AC energy generation, panels efficiency and inverter efficiency.

Figure 1 The PV Power Plant at GeePs

• This poster also offers 3 models to predict module temperature and compares them with measurement temperature. What's more, 2 DC power output models and 1 inverter efficiency model are also provided to simulate the operating situation during working hours.

Error Analysis Modelling and Simulation $MAE = \frac{\sum_{i=1}^{N} |X_{Model}(i) - X_{Meas}(i)|}{N}$ • 3 Models for Module Temperature $MBE = \frac{\sum_{i=1}^{N} (X_{Model}(i) - X_{Meas}(i))}{N}$ • 2 Models for DC Power Output • 1 Model for Inverter Efficiency $RMBE = \frac{\sum_{i=1}^{N} (X_{Model}(i) - X_{Meas}(i))}{\sum_{i=1}^{N} (X_{Meas}(i))}$ $RMAE = \frac{\sum_{i=1}^{N} |X_{Model}(i) - X_{Meas}(i)|}{\sum_{i=1}^{N} |X_{Meas}(i)|}$

Figure 2 The Backside of PV Power Plant at GeePs

-29/03/2019 Ta=13.3°C

-02/06/2019 Ta=26.4°C

UTC Time

90.20%

89.40%

-29/03/2019 Ta=13.3°C

-02/06/2019 Ta=26.4°C

RESULTS – DISCUSSION - CONCLUSION

Overview of the Performance				
	Weather Conditions	The Whole Period	Clear Days	Cloudy Days
	Number of Days	106	35	71
	Daily Solar Irradiation	4.63 KWh / m ²	6.70 KWh / m ²	3.61 KWh / m ²
	Daily Energy Generation (DC)	6.00 KWh / day	8.49 KWh / day	4.78 KWh / day
	Daily Energy Generation (AC)	5.23 KWh / day	7.52 KWh / day	4.10 KWh / day
	Panels Efficiency	13.49%	13.00%	13.73%
	Inverter	85.67%	88.63%	84.22%

Efficiency

4:00:00 6:00:00 8:00:00 10:00:00 12:00:00 14:00:00 16:00:00 18:00:00 20:00:00

- Faiman Model is the most accurate one among these 3 models
- Values calculated from Sandia Model are always higher than measurement temperature
- The Advance NOCT Model is accurate at relative low temperature, and it becomes inaccurate when the module is heated

• The reason of the deviation is the constantly MPPT adjustments of inverter.

REMERCIEMENTS

This work was conducted in the frame of the TREND-X research program of Ecole Polytechnique,

supported by Fondation de l'Ecole Polytechnique.

