OUTDOOR PERFORMANCE EVALUATION OF FIVE SRTA PHOTOVOLTAIC MODULES AT SIRTA SITE INSTRUMENTAL DE RECHERCHE

PAR TÉLÉDÉTECTION ATMOSPHÉRIQUE

Author: Naveen Fatima – Laboratoire de Météorologie Dynamique (<u>naveen.fatima@polytechnique.edu</u>) Contributors: Jordi Badosa (LMD), Anne Migan (GEEPS), Vincent Bourdin (LIMSI)

17.5

15.0

7.5

5.0

2.5

0.0

OBJECTIVES

The objective of this research is to evaluate the performance of five photovoltaic module technologies installed at SIRTA: tandem structure with amorphous and microcrystalline silicon layers (a-SI/ μ -Si), monocrystalline silicon (c-Si), heterojunction with intrinsic thin layer (HIT), thin film chalcogenide semiconductor film cadmium telluride thin (CIS) and semiconductor (CdTe). These technologies will

METHODOLOGY

The specifications of the five PV modules at STC (1000 W/m², AM1.5 and 25° C) are shown in Table 1. Using I-V curves, modules temperature and irradiance, we derive efficiency and module performance ratio using these equations:

$$\eta_{monthly} = \frac{P_{max}}{POA \times size} \times 100; \quad MPR = \frac{Array \ yield, Y_A}{Reference \ yield, Y_R} = \frac{\sum \frac{P_{max,h}}{P_{max,STC}}}{\sum \frac{POA_h}{POA_{STC}}}$$
Monthly efficiencies and MPR of all the modules are calculated for 2018 and effect of different parameters on MPR is studied.

different parameters on MPR is studied.						
	SHARP Serie NA- F128GK	France Watts FL60- 250MBP	Solar Frontier SF150L	Panasonic N240	First Solar FS Series 3	
Technology	a-Si/µ-Si	c-Si	CIS	HIT	CdTe	
Maximum Power	128 W	250 W	130 W	240 W	82.5 W	
Short-circuit current	3.45 A	8.21 A	2.10 A	5.85 A	1.94 A	
Open-circuit voltage	59.8 V	30.52 V	106.0 V	52.4 V	60.8 V	
Efficiency	9 %	15 %	12.2 %	19 %	11.4 %	

Limsi Geeps

be compared on the basis of:

- Module Efficiency
- Module Performance Ratio
- Effect of temperature, Irradiance and Angle of Incidence on the performance

Table 1: Specifications of five module technologies installed at SIRTA

Figure 1: SIRTA test bench platform

RESULTS

•	The	MPR	values	range	from	80	to	102%.
---	-----	-----	--------	-------	------	----	----	-------

- Higher MPR in winters, lower in summer
- a-Si/µ-Si has the highest MPR throughout the year and shows constant performance.
- c-Si and HIT perform the best in winter but the $\sqrt{2}^{12.5}$ 0.01 GUC performance degrades in summer

Technology	Min	Max	Avg	Datasheet	Effici
a-Si/u-Si	7.9%	8.7%	8.3%	9%	
c-Si	12.2%	15.4%	13.8%	15%	
CIS	10.4%	11.8%	11.1%	12%	
HIT	16.1%	18.7%	17.5%	19%	
CdTe	9.4%	11.3%	10.2%	11%	

Figure 2: Monthly Efficiencies of the five modules

Figure 3: Monthly Module Performance Ratios of the five modules

Table 2: Comparison of calculated efficiencies with datasheet values

CONCLUSION

c-Si performs better in winter whereas a-Si/µ-Si performs better in summer . a-Si/µ-Si is most stable in response to higher module temperatures, low irradiance and high AOI. c-Si and HIT, have high efficiencies but performance is strongly affected by the change in conditions. Thin film CdTe and CIS show moderate effect of changing parameters.

This work was conducted in the frame of the TREND-X research program of Ecole Polytechnique,

supported by Fondation de l'Ecole Polytechnique.

