Laboratoire de Météorologie Dynamique École Polytechnique

Sizing of a short-term wind forecasting system

Aurore Dupré

5th July 2019

Journée du SIRTA

Context and motivation

Why short term wind energy forecasts ?

→ Worldwild increasing number of wind farms each years

Figure: Historic development of total installation in GW. *Extracted from GWEC Report 2018.*

- → Forecasts on several time scales becoming necessary (anticipate energy production, plan maintenance operations, etc...)
- → The end of the feed-in tariffs make short-term forecasts vital for wind energy producers

Sub-hourly forecast of averaged wind speed

Data and methodology

Linear regression over *N* explanatory variables extracted from **ECMWF hourly forecasts**:

$$\widehat{y}_t = \alpha_0 + \sum_{i=1}^{n_1} \alpha_i X_i + \varepsilon, \quad n_1 = N$$

- → Among the explanatory variables, some provide less information and some may be correlated
- → A variables selection algorithm is useful to keep only the most important variables

$$\widehat{y}_t = \alpha_0 + \sum_{i=1}^{n_2} \alpha_i X_i + \varepsilon, \quad n_2 \ll N$$

Journée du SIRTA

Sub-hourly forecast of averaged wind speed

Results

Figure: Improvements over persistence for ECMWF, $LR_{SW}^{\rm no-obs}$ and $LR_{SW}^{\rm obs}$

From wind speed to wind energy forecasts

Computed power curve

External effects that need to be taken into account:

- 1. Wind direction
- 2. Air density

Computed power curve

External effects that need to be taken into account:

1. Wind direction

2. Air density

Computed power curve

External effects that need to be taken into account:

- 1. Wind direction
- 2. Air density

Sizing of a short-term wind forecasting system

How to manage the lack of instrumentation ?

$$\rho = \frac{MP}{RT} = \frac{M}{R} \frac{(P_0 + P')}{(T_0 + T')} = \underbrace{\frac{MP_0}{RT_0}}_{\rho_0} \left(1 + \frac{P'}{P_0}\right) \left(\frac{1}{1 + T'/T_0}\right)$$

How to manage the lack of instrumentation ?

$$\rho = \frac{MP}{RT} = \frac{M}{R} \frac{(P_0 + P')}{(T_0 + T')} = \underbrace{\frac{MP_0}{RT_0}}_{\rho_0} \left(1 + \frac{P'}{P_0}\right) \left(\frac{1}{1 + T'/T_0}\right)$$

Pressure, temperature and density measured at SIRTA	MAE (in %)
$ ilde{ ho} = ho_0 \Bigl(rac{1}{1+{T_{ m OBS}'}/{T_0}} \Bigr)$	1.37
$ ilde{ ho} = ho_0 \Bigl(1 + rac{P_{_{ ext{OBS}}}}{P_0} \Bigr)$	2.22

How to manage the lack of instrumentation ?

$$\rho = \frac{MP}{RT} = \frac{M}{R} \frac{(P_0 + P')}{(T_0 + T')} = \underbrace{\frac{MP_0}{RT_0}}_{\rho_0} \left(1 + \frac{P'}{P_0}\right) \left(\frac{1}{1 + T'/T_0}\right)$$

Pressure, temperature and density measured at SIRTA	MAE (in %)
$ ilde{ ho} = ho_0 \Bigl(rac{1}{1+{T_{ ext{obs}}^\prime}/{T_0}} \Bigr)$	1.37
$ ilde{ ho} = ho_0 \Bigl(1 + rac{P_{ ext{OBS}}'}{P_0} \Bigr)$	2.22
$ ilde{ ho} = ho_0 \Bigl(rac{1}{1 + { extsf{T}_{ extsf{OBS}}}/{ extsf{T}_0}} \Bigr) \Bigl(1 + rac{P_{ extsf{NWP}}'}{P_0} \Bigr)$	0.49
$ ilde{ ho} = ho_0 \Bigl(rac{1}{1+{T_{ m NWP}^\prime}/{T_0}} \Bigr) \Bigl(1+rac{P_{ m OBS}^\prime}{P_0} \Bigr)$	0.27

Air density: application to wind energy modeling

$$U_n = U_t \left(\frac{\rho_t}{\rho_0}\right)^{1/3}$$

→ Cf. IEC 61400-12-1, 2005

Journée du SIRTA

From wind speed to wind energy forecasts

Results

		MAE (in %)
	$U_n = U_t$	27.66
<i>T</i> ≤ 5°C	$U_n = U_t \left(\frac{\rho_t}{\rho_0}\right)^{1/3}$	18.36
	$U_n = U_t$	24.09
$T \ge 25^{\circ} C$	$U_n = U_t \left(\frac{\rho_t}{\rho_0}\right)^{1/3}$	14.51

Table: BIAS, MAE and NRMSE between the measured and modeled wind energy production for temperatures lower than $5^\circ C$ and higher than $25^\circ C.$

General conclusion

- → A linear regression using Numerical Weather Prediction model outputs to forecast the wind speed improve persistence after 70 min from 2.9% to 31.3% at 170 min
- → Adding the last measurement as explanatory variable improves persistence from 10 min. The improvement goes from 1.4% to 33.3% at 170 min
- → Taking into account the air density variations improves the wind energy modeling up to 39.8%

Thank you for your attention !

Sizing of a short-term wind forecasting system

13 of 13