

Rétrospective des activités « brouillard »

Contributeurs : F. Burnet, S. Cros, C. Dione, JC. Dupont, M. Haeffelin, C. Lac, JF. Ribaud, et les équipes techniques de l'IPSL /CNRM

SIRTA-25ans, 1^{er} juin 2023

Plan de la présentation

- 1. Introduction
- 2. Les processus microphysiques dans le cycle de vie des brouillards
- 3. Les processus dynamiques, thermodynamiques dans le cycle de vie des brouillards
- 4. Apport des observations spatiales
- 5. Parafog : un outils de prévision développé à partir d'observations SIRTA
- 6. Perspectives

Introduction : contexte

Un **brouillard** apparaît quand la visibilité à la surface est inférieure à **1km** à cause de la présence de gouttelettes d'eau en suspension. "Un nuage qui touche le sol".

Transport aérien : retard + blocage (US : 500 M\$ /an) **Transport routier** : risque de collision (fréquence+gravité) **Energie solaire** : production / relance

Brouillard par affaissement de stratus : formé par la descente d'un nuage existant

Brouillard radiatif : formé par refroidissement de l'air proche de la surface

Nombre d'heures par année de brouillard observé sur les principaux aéroports européens ()

Introduction : la montée en puissance des observations depuis 20 ans

	PARISFOG Shedding New Light on Fog Physical Processes	
	ar M. Haerreun, T. Bergot, T. Euss, R. Tarbir, D. Caarea, P. Chazerte, M. Colome, P. Dicener, E. Dirosti, J. C. Dirosti, L. Gores, L. Misson-Ganon, C. Petras, A. Diave Fortow, A. Piotari, J. Ravecone, JC. Ruit, S. Rett, D. Roman, J. Scale, and X. Zuwar, Les précurseurs	
	A held experiment covering more than 100 tog and near-tog struations during the winter of 2006–07 investigated the dynamical, microphysical, and radiative processes that drive the life cycle of fog.	
-		

Campagnes	Parisfog	Parisfog	ACTRIS	SOFOG3D
	2006-2007	2011-2013	2015-/	2019-2020
Lieu	SIRTA	SIRTA	EU	Landes
Coll.	FR	EU	EU	EU
In-situ sol	+	+	+	+
In-situ mat	+	+	+	++
In-situ ballon	+	+		++
Télédétection		+	+++	++
In-situ drone				++
Modélisation		+		++

ACTRIS/PROBE/ Eprofile

L'essor de la télédétection / mise en réseau

Processus microphysiques dans le cycle de vie des brouillards

- Impact des propriétés microphysiques :
 - les gouttelettes se partagent l'eau disponible
 - o sédimentation / rayonnement / dissipation
- Mesures in situ ParisFog 2006-07
 - SMPS : aérosols secs (0.01 à .05 μm)
 - Welas : particules hydratées (0.4 à 42 μm)
- Pas de fermeture entre mesures de visibilité par le DF320 et calculs par théorie de Mie :

=> il manque 30 % de l'extinction Elias et al 2009

Air "propre" : brouillards optiquement peu épais, peu persistants

Air pollué : brouillards optiquement épais, stables, plus persistants

Processus microphysiques dans le cycle de vie des brouillards

- Instrumentation in situ PreViBoss 2010-2013
 - $\circ~$ FM-100 et PVM : gouttelettes (2 à 50 $\mu m)$
- Fermeture entre mesures de visibilité par le DF320 et calculs par théorie de Mie : Elias et al 2015
- Etudes des propriétés microphysiques thèse Mazoyer 2016
 - forte variabilité des diamètres des gouttelettes mais valeurs faibles de concentration totale et surtout de LWC << 0.1 g.m-3.
 - Distribution avec 1 ou 2 modes de gouttelettes activées

Nd (cm⁻³)

100

80

Processus microphysiques dans le cycle de vie des brouillards

- Evolution des propriétés microphysiques : Mazoyer et al. 2022
 - transition brouillard fin à épais : formation très rapide de gouttelettes > 10 μm
 - évolution continue au cours du cycle de vie

SIRTA-25ans, 1-2 juin 2023

OF BUBER DO

WIND

252

(a) Wind speed Z=10m

V (m)

Simulations du cas de brouillard radiatif du 15/11/2011

160

140

120

100

5 80

8.5E-03

4.5E-03

2.5E-03

0.3

Lac et al. 2018

LWC 2m

-11WC-18

- Stolaki et al. 2014, 1D :
 - Forte surestimation des LWC et des concentrations de gouttelettes au sol
- Mazoyer et al., 2017, 3D LES Dx=Dy=5m ; Dz=1m

Wind

100m

200m

temperature Z=10m

600 800

0

- Impact de la barrière d'arbres sur les hétérogénéités à la formation
- Prise en compte du dépôt au sol en plus de la sédimentation

1000m

0 2001 400

• Paramétrisation de l'activation des gouttelettes (Thouron et al. 2012)

(c) Cloud mixing ratio Z=2m

Processus dynamiques, thermodynamiques dans le cycle de vie des brouillards

Processus de formation du brouillard [in-situ & télédétection]

- Affaissement de stratus (Haeffelin et al., 2010, Dupont et al 2012, 2016) – Paris-Fog, SIRTA – télédétection (radar nuage
 - radiomètre, CL31)
 - Fort refroidissement radiatif au sommet du stratus
 - Croissance des gouttes d'eau
 - Drizzles

BASTA-Mini

CL31

Processus dynamiques, thermodynamiques dans le cycle de vie des brouillards

Evolution du brouillard (Découvertes) [in-situ, télédétection & Modèle]

- Taux de production d'eau liquide dans le brouillard (thèse de Wærsted, 2018)
 - LWP dépendant du refroidissement radiatif et du rapport de Bowen
 - Flux de chaleur sensible arrête la production d'eau liquide
- Fog liquid water budget 50 40 30 LW cooling 20 $g m^{-2} h^{-1}$ SW absorption 10 surf. sensible heat surf. latent heat -10deposition / sed. -20 subsidence -30entrainment -4007 08 09 10 11 Time UTC z СТН CLWP Critical LWP (CLWP) $CLWP = \frac{1}{2} \alpha_{eq} \Gamma_{ad}(T, P) CTH^2 + LWC_c CTH$ RLWP Reservoir LWP (RLWP) RLWP = LWP - CLWPLWC0 LWC. LWC

11

- Nouvelles variables diagnostics du brouillard modèle conceptuel de brouillard adiabatique (thèse de Telodo, 2021)
 - Contenu critique d'eau liquide (CLWP)
 - Réservoir d'eau liquide (RLWP)
 - o Paramétrisation de l'adiabaticité équivalent transition brouillard stable/adiabatique

Processus dynamiques, thermodynamiques dans le cycle de vie des brouillards

Caractérisation de la transition brouillard stable/adiabatique

In-situ & télédétection

- Modèle conceptuel (Toledo et al., 2021)
 - Maximum de réservoir du brouillard
 - Adiabaticité équivalente > 0.5
 - LWP > 30 g m⁻²
 - o minimum de visibilité
- Processus thermodynamiques (Dione et al., 2023)
 - \circ Seuil de Turbulence [TKE ~0,2 -0,4 m² s²,]
 - production thermique
 - production mécanique advection

Processus dynamiques, thermodynamiques dans le cycle de vie des brouillards

Processus de dissipation du brouillard In-situ & télédétection

- Déposition des gouttes d'eau drizzles (Dupont et al., 2012)
- Influence des nuages bas sur le refroidissement radiation du brouillard (Wærsted et al., 2019)
- Réservoir déficitaire (RLWP < 0 g m⁻²) dissipation probable du brouillard (Toledo et al., 2021)
- Mélange entre turbulence thermique et mécanique (TKE > 0.4 m² s-2 et σ_w^2 > 0.04 m² s⁻², SHF > 10 w m⁻²) (Dione et al., 2023)

Apport de l'observation spatiale : anticiper la dissipation de brouillard avec Meteosat

Les satellites météorologiques géostationnaires offrent une image de la Terre toutes les 15 min

Image composite des canaux visibles de *Meteosat Second Generation*

Albédo des nuages (8/11/2018) Brouillard signalé au SIRTA ce jour avec les mesures de visibilité Difficile de distinguer un stratus bas d'un brouillard à partir d'une image Une séquence temporelle permet d'identifier et suivre une dissipation.

Apport de l'observation spatiale : anticiper la dissipation de brouillard avec Meteosat

- Recherche de prédicteurs à partir des produits Meteosat
- Evolution temporelle du prédicteur basé sur les observations du canal IR 10,8µm
- AnoDTB = TB(t-15min) TB(t) / moy_spatiale[TB]
- Réduction de la surface de brouillard dès 8:30
- Vers une méthode de prévision de la dissipation

Parafog : Outils de nowcasting développés à partir des observations SIRTA

PARAFOG version 2

anticipation de la formation des brouillards radiatifs + affaissement stratus

Ribaud et al., 2021

SIRTA

 \sim

10-00

11-00

Perspectives

- Poursuite des études portant sur la synergie instrumentale in-situ + télédétection sur le cycle de vie des brouillards
- Application des résultats SOFOG-3D sur le cycle de vie du brouillard avec un focus particulier sur la dynamique, thermodynamique, et la turbulence sur des jeux de données plus longs
 - Tester et affiner les gammes de variabilités.
 - Cadre NF ACTRIS-CRS.
- Parafog v3: apport du machine learning pour le **suivi en quasi-temps réel du risque de dissipation** du brouillard. Convergence vers un outil complet: formation + dissipation.
- Spatial : apport nouveau satellite **MTG** (résolution temporelle ++, nb de canaux ++, produits dérivés ++)
- Modélisation: passage du modèle **AROME à 500m** (opérationnel pour les JO PARIS 2024)
 - Nouveau schéma microphysique (LIMA / 2 moments)

MERCI – THANK YOU

Institut Pierre-Simon Laplace (IPSL)

Processus microphysiques dans le cycle de vie des brouillards

Les processus microphysiques dans le cycle de vie du brouillard (5min, responsable F. Burnet)

- Observations (in-situ) et modélisation : 2 thèses, > 10 articles
- a. Elias, T., M. Haeffelin, P. Drobinski, L. Gomes, J. Rangognio, T. Bergot, P. Chazette, J.-C. Raut, M. Colomb.: Particulate contribution to extinction of visible radiation:pollution, haze, and fog. Atmospheric Research 92, 443–454, **2009.**
- b. Haeffelin, Martial, Dupont, Jean-Charles, Boyouk, Neda, Baumgardner, Darrel, Gomes, Laurent, Roberts, Greg, and Elias, Thierry.: "A Comparative Study of Radiation Fog and Quasi-Fog Formation Processes During the ParisFog Field Experiment 2007" Pure and Applied Geophysics Vol. 170, No. 12, pp 2283, 1420-9136, **2013**
- c. Hammer, E.,M. Gysel, G. C. Roberts, T. Elias, J. Hofer, C. R. Hoyle, N. Bukowiecki, J.-C. Dupont, F. Burnet, U. Baltensperger, and E. Weingartner. Size-dependent particle activation properties in fog during the ParisFog 2012/13 field campaign, *Atmos. Chem. Phys.*, 14, 10517-10533, **2014**
- d. Elias T., J.-C. Dupont, E. Hammer, C. R. Hoyle, M. Haeffelin, F. Burnet, and D. Jolivet : Enhanced extinction of visible radiation due to hydrated aerosols in mist and fog, *Atmos. Chem. Phys.*, 15, 6605-6623, **2015**
- f. Stolaki, S., Haeffelin, M., Lac, C., Dupont, J.-C., Elias, T., and Masson, V.: Influence of aerosols on the life cycle of a radiation fog event. A numerical and observational study, Atmospheric Research Vol. 151, pp 146, 01698095, **2015.**
- g. Mazoyer, M., Lac, C., Thouron, O., Bergot, T., Masson, V., and Musson-Genon, L.: Large eddy simulation of radiation fog: impact of dynamics on the fog life cycle, Atmos. Chem. Phys., 17, 13017-13035, https://doi.org/10.5194/acp-17-13017-2017, **2017**.
- h. Dupont, J.-C., Haeffelin, M., Wærsted, E., Delanoe, J., Renard, J. -., Preissler, J., & O'Dowd, C.: Evaluation of fog and low stratus cloud microphysical properties derived from in situ sensor, cloud radar and SYRSOC algorithm. Atmosphere, 9(5) https://doi.org/10.3390/atmos9050169, **2018**.
- i. Mazoyer, M., Burnet, F., Denjean, C., Roberts, G. C., Haeffelin, M., Dupont, J.-C., and Elias, T.: Experimental study of the aerosol impact on fog microphysics, Atmos. Chem. Phys., 19, 4323–4344, https://doi.org/10.5194/acp-19-4323-2019, **2019**.
- j. Mazoyer, M., Burnet, F., and Denjean, C.: Experimental study on the evolution of droplet size distribution during the fog life cycle, Atmos. Chem. Phys., 22, 11305–11321, https://doi.org/10.5494/acp-22-11305-2022, 2022.

Processus dynamiques, thermodynamiques dans le cycle de vie des brouillards

Les processus dynamiques, thermodynamiques dans le cycle de vie du brouillard (8min, responsable C. Dione)

- Observations (télédétection) et modélisation
- Les découvertes (2 thèses et 8 articles)
 - Processus : Thèses Waersted, Toledo, ...; articles Haeffelin et al, Stolaki et al., Waersted, Toledo, ...
 - Transition stratus-brouillard, brouillard stable-adiabatique : article Dupont et al 2012, et des résultats de SOFOG-3D
 - a. Dupont, J.-C., Haeffelin, M., Protat, A., Bouniol, D., Boyouk, N., and Morille, Y.: Stratus-fog formation and dissipation: a 6-day case study, Bound.-Layer. Meteorol., 143, 207-225, , 2012.
 - b. Haeffelin, Martial, Dupont, Jean-Charles, Boyouk, Neda, Baumgardner, Darrel, Gomes, Laurent, Roberts, Greg, and Elias, Thierry.: "A Comparative Study of Radiation Fog and Quasi-Fog Formation Processes During the ParisFog Field Experiment 2007" Pure and Applied Geophysics Vol. 170, No. 12, pp 2283, 1420-9136, **2013**.
 - c. Dupont, J. C., Haeffelin, M., Stolaki, S., and Elias, T.: "Analysis of Dynamical and Thermal Processes Driving Fog and Quasi-Fog Life Cycles Using the 2010–2013 ParisFog Dataset" Pure and Applied Geophysics Vol. 173, No. 4, pp 1337, 1420-9136, **2016**.
 - d. Wærsted, E. G., Haeffelin, M., Dupont, J.-C., Delanoë, J., and Dubuisson, P.: Radiation in fog: quantification of the impact on fog liquid water based on ground-based remote sensing, Atmos. Chem. Phys., 17, 10811–10835, https://doi.org/10.5194/acp-17-10811-2017, **2017**.
 - e. Dupont, J.-C., Haeffelin, M., Wærsted, E., Delanoe, J., Renard, J. -., Preissler, J., & O'Dowd, C.: Evaluation of fog and low stratus cloud microphysical properties derived from in situ sensor, cloud radar and SYRSOC algorithm. Atmosphere, 9(5) https://doi.org/10.3390/atmos9050169, **2018**.
 - f. Toledo, F., Haeffelin, M., Wærsted, E., and Dupont, J.-C.: A new conceptual model for adiabatic fog, Atmos. Chem. Phys., 21, 13099–13117, https://doi.org/10.5194/acp-21-13099-2021, **2021**.
 - g. Wærsted, EG, Haeffelin, M, Steeneveld, G-J, Dupont, J-C. Understanding the dissipation of continental fog by analysing the LWP budget using idealized LES and in situ observations. Q J R Meteorol Soc., 145, 784–804, **2019**.
 - h. Dione, C., Haeffelin, M., Burnet, F., Lac, C., Canut, G., Delanoë, J., Dupont, J.-C., Jorquera, S., Martinet, P., Ribaud, J.-F., and Toledo, F.: Role of thermodynamic and turbulence processes on the fog life cycle during SOFOF3D experiment, ACP, prêt pour soumission, **2023**