

15 ans d'observation du brouillard au SIRTA: analyse statistique des processus pilotant sa formation, évolution et dissipation

Cheikh DIONE, Jean-Charles DUPONT, Martial HAEFFELIN, Jean-François RIBAUD

LMD-SIRTA

Journée Scientifique du SIRTA- édition 2024

Context and objective

- Brouillard phénomène météo à fort impact socio-économique
- Complexité de la prévision par les NWPs
- Besoin de production de services pour la prévision immédiate

Objectives:

- → Identifier les différentes phases des brouillards
- Documenter les processus locaux et synoptiques pilotant les phases des brouillards
- Quantifier ces processus afin de produire un outil d'aide à la prise de décision pour la dissipation des brouillards – système d'alerte précoce de prévision du brouillard (Parafog v3)

Accident routiers

Données

- Régimes de temps synoptiques + Stabilité (Radiomètre Hatpro) influence grande échelle
- Synergie instrumentale processus locaux)

Instruments in-situ et télédétection

Occurrence des brouillards

- Définition du brouillard visibilité @ 4 m (Tardif and Rasmussen (2007))
 - Heures de formation et dissipation

- 383 cas de brouillards observés au SIRTA
 - → 22 cas de brouillards avec de la pluie pendant la vie du brouillard dont
 - → 13 cas ayant une durée de vie < 4h</p>
 - → 2 cas ayant une durée de vie > 20h
- 6 cas ayant une durée de vie supérieure à 20h

Focus sur les brouillards radiatifs (RADs) et affaissements de stratus (STLs) 4

Occurrence des brouillards

Identification type des brouillards

Influence de la grande échelle sur la vie des brouillards

Régimes de temps synoptiques

Définition des régimes basée sur Yiou et al., 2004, anomalies de SLP réanalyses NCEP ($2.5 \ge 2.5$)

- Région Euro-Atlantique (80°W–30°E, 30°–70°N)
- Période 2011 2020

Quel influence des régimes sur la formation et durée de vie des brouillards au SIRTA ?

Influence de la grande échelle sur la vie des brouillards

301 brouillards [2011-2020]

- Hiver 147 (48,8 %)
- Printemps (12%)
- Été (4 %)
- Automne (35,2 %)

- STLs plus fréquents en Hiver & Dorsale Atlantique
- RADs plus fréquents en Automne & Dorsale Atlantique – plus stable

Stabilité (2h avant brouillard)

2000

Radiation Fog

Influence de la grande échelle sur la vie des brouillards

Lien entre inversion de température et durée de vie des brouillards

Automne & Hiver

- L'amplitude de l'inversion de température influence la durée de vie des brouillards radiatifs
- Régimes synoptiques pilotent l'amplitude de l'inversion de température – durée de vie du brouillard radiatif
- Lien complexe avec les STLs
- D'autres processus locaux ????

MWR Hatpro

Type de formation

Type de dissipation

Brouillard radiatif (RAD)

Figure from C. Lac (SOFOG-3D 2019)

Période 2013-2023

Type de brouillard	Occurrence	Dissipation diurne [06:00 – 18:00[Dissipation nocturne [18:00 – 06:00[
RAD très fin CTH _{max} ≤ 75 m	39	18	21
RAD fin $75 < CTH_{max} \le 150 \text{ m}$	24	19	5
RAD épais CTH _{max} > 150 m, transition stable/adiabatique	29	23	6
STL evaporating LWP =0 dissipation	15	5	10
STL lifting	84	51	33

Total de 191 brouillards

Synergie instrumentale + Modèle conceptuel (Toledo et al., 2021) – Réservoir (RLWP) et adiabaticité $\alpha_{eq}^{closure}$

Phases des brouillards (Dione et al., 2023 – ANR SOFOG3D)

• RADs épais (CTH > 150 m)

• RADs fins et très fins

5 phases

- Pre-fog
- Trans Pre-fog/stable
- Stable
- Transiton Stable/dissipation
- Post-Fog

- STLs (lifting & evaporating)
 - 5 phases
 - Pre-fog
 - Trans Pre-fog/stable
 - Adiabatique
 - Transition adiabatique/dissipation₁₁
 - Post-Fog

Influence des processus locaux sur la vie des brouillards RADs très fins

— dav

— niaht

Évolution de la turbulence à 30 m

Évolution du flux de chaleur sensible (SHF)

• RADs épais (29 cas)

• RADs très fins (39 cas)

- Dissipation diurne des RADs épais et fins SHF > 50 W m⁻²
- Dissipation diurne des RADs très fins SHF > 25 W m^{-2}

• Dissipation nocturne – SHF décroissant lors la phase adiabatique

• RADs fins (24 cas)

Évolution du flux de chaleur sensible

STLs lifting (84 cas)

- Dissipation diurne des STLs lifting associée à SHF > 25 w m^{-2}
- Dissipation diurne des STLs lowering associée à SHF > 50 w m^{-2}

Winter (10) ---- day (5) night (5) 100 75 50 25 -25 Ser -50 Autumn (5) day (2) night (3) -2 Sen

STLs evaporating (15 cas)

Pre-Fog

Trans PF-ac

• Dissipation nocturne – SHF décroissant lors de la phase adiabatique

Adiabatic

Trans ad-dis

Post-Fog

Conclusions

- → Les fortes stabilités sont dictées par le régime de dorsale Atlantique couche d'inversion de température plus épaisse – favorisant des brouillards plus longs
- → La transition stable adiabatique des RADs est pilotée par la turbulence (TKE ~0,2-0,4 m² s⁻²)
- → Les dissipations diurnes observées avec des seuils différents de SHF pour chaque catégorie de brouillard RADs épais (50 W/m²) et fins & STLs evaporating (75 W/m²) & STLs lifting et RADs très fins (25 W m⁻²)
- → Les dissipations nocturnes pilotées par la turbulence mécanique (advection)
- → Les évolutions de la turbulence, SHF proxy pour la prévision de la dissipation des brouillards – Parafog V3 – Projet ANR en préparation pour 2025

Methodology

Fog conceptual model

- In situ and remote sensing data
- T, P, visibility, LWP, CTH

Fog adiabatic conceptual model Toledo et al., 2021

z

СТН

Fog key parameters: equivalent adiabaticity of closure & Reservoir

Equivalent adiabaticity by closure

$$\alpha_{eq}^{closure} = \frac{2 \left(LWP - LWC_0 CTH \right)}{\Gamma_{ad} (T, P) CTH^2}$$

Transition from stable to adiabatic fog

LWC is higher in the lower fog layers: Shallow stable fog

LWC increases with height

- \rightarrow Adiabatic fog
- \rightarrow Fog is transitioning from shallow to adiabatic 16

Methodology

- Low fog LWP at SOFOG3D
- Equivalent adiabaticity by closure consistent at both sites transition stable/adiabatic fog

• More fog LWP at SIRTA

Methodology

Fog conceptual model

Critical and Reservoir LWP

Critical LWP (CLWP)

$$CLWP = \frac{1}{2} \alpha_{eq} \Gamma_{ad}(T, P) CTH^2 + LWC_c CTH$$

Reservoir LWP (RLWP) RLWP = LWP - CLWP

$$RLWP = RLWP | LWP, CTH, T, P$$

Toledo et al., 2021