ICOS Cities Pilot Applications in Urban Landscapes

Bridging Political Pledges and Physical Observations:

Projection of Urban CO₂ Mitigation Strategies at High Spatial Resolution

Ivonne ALBARUS^{1,2}, Thomas LAUVAUX³, Valerie GROS¹, Hervé UTARD², Charbel ABDALLAH³, Jinghui LIAN^{1,2}, Michel RAMONET¹, Olivier Laurent¹, Mali Chariot¹, and Philippe CIAIS¹

¹ Laboratoire des Sciences du Climat et de l'Environnement, UMR 8212 (CEA-CNRS-UVSQ), 91191 Gif sur Yvette, France

² Origins.earth, Suez Group, 92040 Paris La Défense, France

³ Groupe de Spectrométrie Moléculaire et Atmosphérique (GSMA), Université de Reims-Champagne Ardenne, UMR CNRS 7331, Reims, France

ICOS Cities, aka Pilot Applications in Urban Landscapes - Towards integrated city observatories for greenhouse gases (PAUL), has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101037319

Climate battle will be won or lost in cities

Goals of the **ICOS CITIES** project:

- Testing comprehensive urban GHG measurement techniques
- Providing data services that have a societal impact
- Creating useful tools and services for cities in support of local climate actions

In three pilot cities: PARIS, MUNICH, ZURICH

Research Questions

Is Paris and the region on track to meet their climate targets?

What influence has the Paris Climate Action Plan on the spatial distribution of future GHG emissions?

Which atmospheric monitoring networks are required to track future emission changes, based on Climate Action Plans?

Paris: Zero local emissions by 2050

COS Cities

Paris Climate Action Plan Targets

How to spatialize a Climate Plan?

ICOS Cities

Traffic sector CO₂ emissions evolution

The Paris Climate Plan foresees the phasing out of:

- diesel vehicles from 2024
- gasoline vehicles from 2030

CO₂ Signal Detectability?

ICOS Cities

Paris Atmospheric Monitoring network

Determining the visible fraction of ffCO₂

- We do not see everything !
- Double the number of sensors to increase coverage to 94%

ICOS Cities

65% coverage

94% coverage

Spatio-temporal measurement capacity

 ✓ Inside urban areas the CO₂ signal remains sufficiently strong for measurements using mid-accuracy sensors until at least 2030.

ICOS Cities

 Background error reduction has a high influence on the sensor's lifetime regarding detection capacity

Seasonal measurement capacity

- \checkmark Biogenic fluxes and reduced ffCO₂ signal in summer lead to reduced CO₂ signal detection capacities
- Despite its dense population, about half of the IDF region is used for agricultural activities

What kind of sensors and where?

- none
- high-accuracy only

ICOS Cities

high-accuracy & mid-accuracy sensors

- ✓ Mid-precision sensors are more effective inside the city center
- ✓ High-precision sensors are needed to capture signals in the peri-urban areas

Take away messages

Paris' climate actions seem promising for the short-term but further efforts are needed for long-term

We can observe highly heterogeneous CO_2 reduction distributions with large spatial gradients.

With high-granularity and spatially quantified information, climate strategies can be effectively fine-tuned, social aspects included, and citizen support triggered

The number of initial sensors need to be doubled to cover the entire IDF region

Reducing error sources in the inversion system will bring significant progress

Growing season remains a challenge for ffCO₂ emissions monitoring

Mid-cost sensors remain effective inside the urban core until at least 2030

We need to enhance mid-cost sensors performance and decrease inversion model errors to monitor negative future emissions trends.

